
AD-A259 686Q

AFITKSS/LSYJ92D-

DTIC
S ELECTE

soFTwARE SUPPORT

MEASUREMENT AND ESTIMATING

FOR ORACLE DATABASE APPLICATIONS
USINGj MARK HI FUNCTION POINTS

THESIS

Steven D. Radnov, catwin, USAF

AFIT/3SSALSYM9D-4

It 93-01401

Ap~xoed far public releau dWUiwbua unlimiled

93 1 26 019

The views expressed in this thesis are those of the authors
and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

DTIC QUALT7 fi LUSPECTED 5

r U•-,to ,. []

iJust • t Let iW.-•
!! •.iT-

-- --

AvllabllittY Codes

.4&s , ! 1 and/or
jDIst Speiala

AFrrT/SSALSY/92D-4

SOFTWARE SUPPORT

MEASUREMENT AND ESTfIMATINO

FOR ORACLE DATABASE APPLICATIONS

USING MARK IT FUNCTION POINTS

THESIS

Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of lechnalogy

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Software Systems Management

Steven D. Radnov, BA Computer Science

Captan, USAF

December 1992

Appnoved for public release; distribution unlimiled

Preface

This thesis measures levels of Oracle database software support in ftrms of Mark II function points

mapped to Oracle software components, and measures the effort and schedule response of four progranming

teams. The mapping allowed programmers to easily and unambiguously determine the size of the project

before the coding began. A significant relationship was discovered between a given level of support

and the programmers' effort response measured in work-hours as well as schedule response measured in

calendar-weeks.

My education and insights gained from on-tde-job experience in a database support organizaon

inspired and sustained my obsession to see this through to fulfillment. My friends' and former colleagues'

interest in my thesis has been a great source of encouragement. Captain Kathy Auzenne, Chief of the

Systems Support Division sponsored this research and made it possible to collect enough real world data

to put the theory to the test. Without observations from the field, most of the ideas would not have

been tested. Thanks Kathy! Susan Zindorf's valuable insights into local software support activities and

a 'reality-check' of the mapping of Oracle components to Mark I function points were pivotal. I wish

she could have participated in the eventual data collection. Doug Burkholder and Beth Davis provided

omniscient and omnipotent assistance as only DBAs can. Of course. I cannot forget Jeff Lindsey, Larry

Frazier, and Kathleen Hale for their coopertion. Professor Dan Reynolds introduced me to a wuverse of

possibilities in probability and statistics, as well as encouraged me in my endeavors. Thanks Dan! Fmially,

I would like to thank my advisor, Dr. Rich Murphy (a man of infinite patience).

The support and understanding of my family gave me the energy to persevere. My wife Carrie is

a saint of course, for sacrificing, for listening, and for giving so much and asking so little. Our youngest

daughter Alaina lights up every day with her endless smiles while her sister Natasha adds her boundless

enthusiasm. They both look up to their big sister Rebecca, who channs every one she meets and makes

my problems seem so small in comparison to her battle against Cystic Fibrosis. Rebecca is an inspiration

to all ... especially to me.

Steven D. Radnov

Ii

Table of Co, en. Page

ist o• Fig es .. viii

ust of c bb es ... ix

Asrc.ct x......... .. x

I. ntroducion ... 1

m.I. Bw round .. 1

1.2. Specific Problem 2

1.3. Research Objective ad Investigative Questions 2

1.4. Scope md Limitations 3

1.5. Definitions for Meaurement 3

1.6. Definitions for Estimating 4

1.7. Thesis Organization 4

11. iUteratue Review ... 6

IL.L Overview .. 6

11.2. Lines of Code (LOCs) 6

1.3. Albrecht's Function Points 9

U1.4. Symmos' Mark 13 Function Poke s........................... 14

I.S. Jones' Feia Po(*vts 16

11.6. Halstead's Software Science 17

U.7. McCabe's Cyclomtic Complexity 18

Il.8. Other Sizng Mea ods 18

U.9. Esdt Effort aid Sched& e 19

1.10. Summfay ... 20

iii

PaWe

UL Measwement Methodology 21

Ill.1. Overview ... 21

111.2. Software Unit o Measmure 21

113. Oracle Softwar Measurement 22

111.4. Effort and Schedule Measurement 24

111.5. Dma Collection P romn 24

111.6. Summ ury ... 26

IV. Esnmating Methedolo ... 27

IV.1. Overview ... 27

IV.2. Population .. 27

IV.3. Descriptive Analysis 28

VA. Regression Analysis a 28

IV.5. Indicator NV riables 29

IV.6. Effort Model 29

IV.7. Schedule Model 29

IV.8. F-Ratio .. 30

IV.9. Para eers .. 30

IV.10. Model S p a 30

IV.I 1. Disribution of emrtrams 31

IV.12. Outliers .. 31

IV.13. Influential Outliers 32

IV.14. Coflineaity .. 32

IV.15. Prdmcti Intervals 33

IV.16. Summa .y ... 34

iv

Pap

V. Analysis .35

V.I. Descriptve .. 35

V.2. Relpession .. 35

V3. Effort Model 36

V.3.1. Descriptive Statistics 36

V.32. dkA ramble 36

V.33. Coe ncint of De minstioi 37

V3A. F-Raio 37

V3.5. Pimmeer Tess 37

V3.6. Model S p a 38

V3.7. Disbtbution of ie Error Tams 38

V3.8. Oudiers 38

V.3.9. Influential Ou 38

V3.10. Coini n e m t 39

V.3.11. Prediction Intervals 39

V-3.12. Closing 39

VA. Schedule Model One 40

VA.1. Descriptive Statistics 40

V.4.2. Indicator Nimirbles 40

V.4.3. Coefficient of Deten inaon......................... 41

V.4A . F-Raido 41

VA.5. Pwauamer Tests 41

VA.6. Model Specificaion 42

VA.7. Dk ution of die Error Tans 42

VA.8. Ou iers. 42

VA.9. Influenal Outier 43

VA.10. Coaki arity 43

VA.11. Prediction I ervals 43

VA.12. Closing 44

v

Pag

V.5. Schedule Model 2 44

V.5.1. Descriptive Statistics 44

V.52. Indicator iables 44

V.5.3. Coefficient of Determinaion 45

V.45 . F-Ratio 45

V.5.5. Pumneta Tests 45

V.5.6. Model Specification 46

V.5.7. DisUibution of the Error Tram 46

V.5.8. Outliers 46

V.5.9. Influential Outliers 47

V35.10. Collinearity 47

V3.11. Prediction Intervals 47

V35.12. Closing 47

V.6. Sunm may ... 48

VI. Conclusion .. 49

VI.I. Meaurement Results 49

VI.1.1. Sizing 49

VI.1.2. Effort md Schedule 49

VI.2. Esia tn g Results 49

VI.2.1. Effort 49

Vl2.2 Scbedule 50

VI.3. Recmmeatos...................................... 50

VI..L Meurement 50

VI3.2. Estimating 53

vi

Past

VL4. Software Quality 56

Appendix A: Observa s .. 58

A.1. Frequency Plots 59

A2.. Effort Scatter Pot 60

A.3. Schedule ScatterPot 61

Appendix B: Effort Model .. 62

B.I. ANOVA mad Pa]muneer Estima 62

B2. Model Specification 63

B.3. Influential Outliers and Collinearity 64

B.4. Prediction Intervals 65

Appendix C: Schedule Model One 66

C.I. ANOVA mad Parameter Estimates 66

C2.. Model Specification 67

C.3. Influential Outliers and Collinearity 68

CA. Prediction Intervals 69

Appendix D- Schedule Model Two 70

D.I. ANOVA and Parameter Estimates 70

D2. Model Specification 71

D.3. Influential Outliers and Coflinemity 72

D.4. Prediction Intervals 73

Appendix E: F REP. ... 74

E.i. FP2.R2 . .. 74

E.2. REDUCE.COM 74

Appendix F: SQLOFns Inputs, Entities, Oup s. 75

Appendix 0: Daa Dickiomy Prorn.m 76

Appendix H: Data Collection Progrun 100

Biblioraphy... 134

Vita .. 136

vii

List of Figures pae

1. Productivity Paradox .. 9

2. Behren's Research .. 12

3. Entity Model ... 14

4. Effort vs. Function Points Plot 28

5. Residual plot against independent variable 31

6. Effort Model Regression Lines 36

7. Schedule Model One Regression Lines 41

8. Schedule Model Two Regression Lines 45

9. Influential Points ... 54

10. All Observation.s ... 54

.i 1. Effort Model Predicted vs Actuals. 65

12. Schedule Model Two Predicted vs. Actual Schedule 69

13. Schedule Model Two Predicted vs Actual 73

vim

Limt of Tabls Page

1. Function Count (FC) ... 10

2. Unadjusted Function Point Count Example 15

3. Mapping Oracle Components to Mark 1I Function Points 23

4. SQL*FoImS and SQL*RepoM Function Point Count 24

5. Effort Model Parameter Tests 37

6. Schedule Model One Pasrmet Tests 42

7. Schedule Model Two Parmneter Tests 46

8. Multiple Factors .. 52

9. Summary of Team Observations 58

10. 80 Percent Prediction Intervals for Effort Model 65

11. 80 Percent Prediction Intervals for Schedule Model One 69

12. 80 Percent Prediction Intervals for Schedule Model Two 73

ix

AFrTr/SS/LSY/92D-4 Abstract

This study investigated die results of measuring software support of Oracle database applications and

estimating the effort and schedule required to provide support. Software measurement was accomplished

with a variant of the function points metric, called Mark 1 function points, which is comprised of three

weighted parameters, inputs, entities, and outputs. A technique for mapping Mark 11 function points so

Oracle DBMS components was developed, and the size of the software support f., each project, per team,

was measured by tabulating and weighting the number of inputs, entities, and outputs that are added,

changed, and/or deleted Software support effort was measured in work-hours and schedule in calendar-

weeks for given levels of function points. A data collection program was written to assist with tabulating

the measurements and also provided an option for sizing the support by analogy. Observations were

collected for 12 projects ranging up to 50 function points. The relationship between software support

measurement in Mark 11 function points and the resulting effort or schedule was extensively analyzed for

one and two person teams. A relationship determined by regression analysis was shown to be statistically

significant for both effort and schedule.

x

SOFTWARE SUPPORT MEASUREMENT AND ESTIMATING FOR ORACLE

DATABASE APPUCATIONS USING MARK II FUNCTION POINTS

L Introduction

1. Backgroud

A critical challenge for software support organizations is the management of changes to dhe supported

system. Software projects we conducted according to a plan based on an estimate of the size of the project.

The plan describes the expected schedule and effort needed to provide the software support.

The Air Forc Institute of Technology has its own software support organization, the Systems Support

Division (AFIT/SCV), that provides computer support to the Institute. SCV manages all of AFIT's software

requirements for communications-computer systems including studies, analyses, requirements definition,

design, development, documentation, testing, implementation, and training on unique software applications.

SCV conducts software project status briefings for senior AFIT staff. They also assure that computer support

contractors perfom in compliance with all pertinent communications-conmputer systems regulations and

the Quality Assurance Surveillance Plan (35:1). This research will focus on SCV's software support to

applications, using a commercial relational database management system (DBMS) by Oracle corporation.

The DBMS includes a database engine that relates records of data to one another and it provides several

software tools to access the database. Some of the tools are SQL*Plus, SQL*Foms, and SQL*Reports.

The database query language that is used is SQL*PIus, which is an extension of the Structured Query

Language (SQL) as defined by the International Business Machines corporation. SQL is a non-procedural

data access language. The term 'non-procedural' means that the programmer does not have ;o specify the

procedure for accessing data, but instead only has to specify what data is to be accessed (30.213). For

example, there we no 'if-then-else' constructs and no means for making temporary compuations.

SQLF*brms is a fourth generation application development language (4GL) that suculaines the

software development process by generating most of the user interface input and oput software details

for the programmer, as well as data access. "Fourth generation languages ae defined as those that ae non-

procedural in nature and end-user (requirements and specifications) oriented" (3:149). This correspondence

1

facilitates the partitioning of the software support requirement into meaningful software units of measure.

A consequence of the ease of use of 41Ls is that they tend to restrict the variety of solutions, which creales

a close correspondence between the source code produced by die applications generato and the software

requirement itself. This allows the programmer to focus on assembling the functions that were requested

by the user of the database applications. SQL*lonms produces interactive 'forms' that allow the user to

store and retrieve data. SCV uses version 2.3 of SQL*Forms. Another tool, SQL*Repcxts, extracts records

from the database and formats the output. SCV provides Oracle database software support by enhancing

the forms or reports that access the database.

1.2 Specic Problem

Recent changes in the AFIT/SCV software support environment requires SCV to more effectively use

available resources. Historically, SCV has relied upon expert judgement to estimate project schedules, but

is now faced with tighter budget constraints, requiring the same level of support with fewer resources. The

budget constraints have forced SCV to reduce its contracted support strenigth ftrm seven to two analysts.

lb partially compensate, SCV had a net increase in enlisted progranmer support fhm five to six, as a result

of two NCOs leaving and three airmen arriving. The loss of the contractor support also represents a loss of

the expertise on which project estimates are based, requiring newly trained enlisted propgrmers to make

estimates. 7b meet this need, the Chief of the Systems Support Division has requested that thesis research

be done in the area of software support measurement and estimating (34:151). Given a requirement to

change an existing Oracle database application, SCV needs to be able to predict how long it will take to

deliver the change, so that planning and contracting decisions can be expedited. Consequently, SCV would

like to make accurate estimates of project size, effort and schedule.

1.3 Resmrch Objective and Investigative Questions

The research objective is: to estimate the expected support effort and schedule given the size of an

Oracle database software support requesL The investigative questions that directed this research me:

"* What is the most meamingfu software size measure?

"* How much effort and schedule is required for given levels of software support?

"* What is the relationship between the size and effort or schedule?

2

M4 Scope and Limitations

Only software support for Oracle database systems was uacked during the three-month dam

collection period of this thesis. During this period, SCV was staffed with new contactors and several

new enlisted programmers, but no governmen civilian programmers. System accounting data relevant

to project activities was not collected because automatic accounting is not activated in the SCV Oracle

environment The software baseline supported by SCV has no documentation or formal review process,

and is managed as separate development and operational baselines.

LS Definition for Measuresnut

- Analogy: characterizing the size of software to be developed relative to existing software.

- Block: SQL*Focms components that are based on database tables.

- Calendar-week: the period of time that a software support project was open from start to finish.

- Entity: "is anything (object, real, or abstract) in the real world about which the system provides

information" (32-4).

- Environmental factors: any features about an organization or project other than size that may

influence effort and schedule.

* Field: data items that are displayed on the screen or printed in a report.

- 4GL: Fourth Generatoio Languages allow easy construction of screen-oriented applications.

* Function Points: a measure of the functionality of software that assigns points to software functions.

* LOC: an acronym for Line Of Code, which is a popular measurement of software.

• Metric: software measurement in general, such as LOCs or Function Points.

- Non-procedural language: a computer language for specifying what needs to be done, rather than

how to do it (30:213).

- SER: Software Fnhancement Request is a request for software support from AM" faculty and

administrative personnel to SCV.

- SQL*Forms: a 40L that defines an interactive scree comprised of trigger steps, blocks, and fields.

* SQLeReports: an Oracle database access lamguage to retrieve and format data for oulpuv

* Work-hours: the hours spent exclusively on the software support project, per programmer.

3

"* Tabies: data files that are organized into columns of entity attributes and rows of entity instances.

"* Trre•r steps: a SQL*Forms mechanism to validate inputs.

"* Virta Mchde: a computing machine that could be implemented using hardware entirely, but

instead simple hardware operations we used by software to provide complex operations.

1.6 Definitios for Estimating

"* ANOVA: Analysis of variance.

"* COCOMO: an wtonym for COnstructive COst MOdel (6:58).

" Deleted residuals: a measurement of the i-th residual when the fitted regression is based on the

cases excluding the i-th one (21:398).

"* Indicator variables: quantify a qualitative variable for inclusion in a regression model.

"* Leverage: a measure of the distance between the values of a given observation and the means of

the values of the independent variable for all observations; it is used for outlier detection (21:395).

"* LSBF: Least Squares Best Fit.

"* Randomness: a lack of a systematic paN&.

"* Residual: the difference between the observed value and the predicted value.

"* Specificatiom: the extent to which a regression model is appropriate for the data.

"* SSE: Error sum of squim.

"* SSR: Regression sum of square.

"* SSTO: Toal sum of squares.

"* Studentized deleted residuals: a deleted residual divided by its estimated standard deviation

(21:399).

" Type I error, deciding to reject the null hypothesis when in fact it is valid.

V. Thesis Organization

Chapter One provides some bwAkrn defines the research objective, and defines some termi-

nology relevant to this thesis.

Chapter Two reviews current literature on software measurement and estimating. The review

focuses on two methods, the counting of lines of code and a very different method called function points.

4

Complexity measures and other metrics are also reviewed, as well as software cost estimating literature.

Chapter 7Tee describes the software support measurneent methodology. The three software support

measurements that are collected are size, effort, and schedule. The sizing method chosen was Mark HI

function points mapped to Oracle database software components. The effort is measured in woark-hours and

the schedule in calendar-weeks. Software was written to collect die data and provide sizing by analogy,

using data dictionary report.

Chapter Four describes dte software support effort and schedule estimating methodology. The

prediction models developed are based on regression analysis of die programming teams' effort and schedule

response to software support requests as sized by Mark U funtio points.

Chapter Five presents the regression analysis and the effort and schedule models for one and two

person teams.

Chapter Six contains conclusions from the research and - m- atio-.

5

EL ULterature Review

ILl Overview

Prediction or forecasung of any kind is based on inputs. ibis literature review focuses primarily

on the types of software metrics doht ae used by the software industry as inputs to Prediction models.

The primary software metrics reviwed and contrasted me lines of code mid function poi. Also, several

complexity measures are discussed Different enviromnmenal factors that may influmce the software support

were viewed as well as exiting effort and schedule estimating models.

112 Lines of Code (LOCs)

Tie most common measure of software size is lines of code. Rakos states that all software project

estimating methods "ae crucially dependent upon grauarizior: breaking thinp into small pieces"

(25:128). Compared to a typical computer program, an individual line of code is a very small piece of the

software. To understand an LOC, familiarity with the concept of a virtual machine is belpful. 71nenbam

descrnb different levels of virtual machines that exist on most computer systems. Each level has a code or

language by which solutons to a problem ar speciied, and each level above level zero can be translad

into lower levels (36:2-7).

Tie lowest level of virtual machines is the level zero, the digital logic level. At this lowest level,

software is executed directly in the electronic circuits. At this low level, the semantics of the computer

program ae very difficult for most people to comprehend. At level one, the m level,

a code is used to describe the computer's truisitions through states of operation This microprogram

or microcode Is represented by alphonumeric charters mad special symbol. ibis level is much more

crehensible than level zero, but it is still cryptic and inconvenient to use. At level two, the conventional

machine level, multiple rmicoode staements ae represented by single machine code statements. ibis

is easier to work with but still cumbersome. Level dte is the operating system which groups machine

code into operatinrg system services. It is not until level four, the assembly language level, that substantial

applications can be developed by a programmer. Most programming however is done at level five, the

problem-oriented language level. At this level, English-ike codes are used to specify the solution to the

problem. These codes are displayed in J; ., and the size of the progrnm is measured in terms of the

6

number of lines of code, or LOCs (36:2-7).

The most quoted source on LOCs is Barry Boehm who uses the term 'source instruction'. Thus

term includes all program instructions created by project personnel and processed into machine code by

some combination of prerocessor, compilers, and assemblers. It excludes comment cards mid unmodified

utility software. It includes job control language, format sMon, and data de ations. Instructions

ae defined as lines of code or card images. Thus, a line containin two or mome souce statements counts

as one instruction; a five-line data declaration counts as five instructions (6:59). Boehm's is only one of

many definitions of how to count lines of code after the code has been written.

Counting lines of code is popular because aoier the code has been written. there is a high conr on

between LOCs and the effort that produced those lines of code. But a size estimate needs to be accomplished

before the lines of code are written. Boehm takes it for granted that the software personnel cam make

accurate estimates of how many LOCs will be written to solve the problem at hand, but warns diat

underestimates can happen for three reasons. "Frst, people are basically optimistic and desire to please.

Second, people tend to have incomplete recall of previous experience. Third, people we generally not

familiar with the entire software job" (6:320-321). In addition to LOCs, the software support organization

and software baseline are characterized by environmental factors.

Barry Boehm created a cost estimating tool based on LOCs called the Constructive Cost Model

(COCOMO). In COCOMO, environmental factors ar a way to differentiate the unique aspects of different

projects and environments. The factors excluded from COCOMO me: type of application, language

level, size measures other than lines of code, requirements volatility, personmel continuity, mangeemem

quality, customer interface quality, mount of documentation, hardware configuration, security and privacy

restrictions (6:345-346,475). The factors included in COCOMO are in four groups:

1. product attributes such as required software reliability, datalase size, mad product conpleuity

2. computer attributes such as execution me constraints, main storage constraints, virtual machine

volatility, and computer tumaround time;

3. personne attributes such as analyst capability, applctons epiene progranmer capsbility,

vi machine experiec, and Vpsnming language experiec.;

4. project attributes such as modem progpummng practices, use of software tools, and required

development schedule. (6:345-346,475)

7

The analyst provides inputs to COCOMO by characterizing die envirmnmental faciors ou various

scales and by estimating how many LOCs will eveulally be produced. Then COCOMO esumaes tie

effort and schedule of die project bised on the analyst's inputs. However, die use of LOCs as a wit of

software measure is the subject of much criticism.

Capers Jons points out die critical importance that measurement has contributed to the progress of

K-ienc in general mid then says di software measurement is pi bly die most deficient aspect of die

field of software engineering. He is not saying that in die lost 35 year of computer history no one has

tried to measure software, rather he is saying dia die accepted meaurements are not measuring what they

purport to menasu. He specifically criticizes die LOC measurement for creating paradoxical information

and he lists three problems (18:49).

First, thr has never been a national or international standard for a LOC dia encompasses all

procedural languages. Some ine counts ae defined by physical carriae rumn, while othders e defined

logically by delimiters such as a semicolon. The line of code counts can contain on, some or all of the

following: executable sttements, data definitions, comments, mad blank lines. There is litle agreement

on how many times reused code should be counted: once, each time it is reused, or never. There's even

more problems when different computer lapuges are mixed Ig together, and how to count addiions,

changes, and deletkis (18:49).

Second. software cm be prduuced by such methods as progrmn geerators, spreadsheets, graphic

icons, reusable modules of uiknown size, and inheritance, wherein entities such as lines of code are

totally irrelevant (18:49). This is especially true of the 4GL SQL*Form, whem software is developed by

in ting with dhe applications generation screen. Source lines of code a•e produced by the applicatio

generabr, but it is not necessary to look at them to complete a project. So If the progranmer chooses not

to ever look at diem, for practical purposes they do not exist.

Third, LOC metrics paradoxically move backwards as the level of the language gets higher, so tdat

the most powerful an advanced languages appear to be less productive tdan the more primitive low-level

languages (18:49). 7b understand the productivity paradox, recall de concept of virtual machines. When

a higher level machine groups ogether many instructm of a lower level machine, then that higher level

Inotruction does the work of many lower level instrucdtos but only counts as one LOC. For example, if a

progranmer using a lower level languages creames 1000 LOCs to solve a problem and another programmer

using a higher level Imlaguage solves die same problem with only 100 LOCs, then by LOC count die

8

frst progammer is considered to have solved a problem ten times lg than the othe progrmmer.

When a fixed number of functions is delivered with increasing numbers of LOCS, productivity drops when

measu•ed in terms of functions per LOC. as depicted in FWigur 1:

Figure 1. Productivity Paradox

Counting LOCs also leads to a quality paradox because high-quality prograns we usually mare

succinct than program that we hastily developed in aad hoc manner. If dhe more succinct progruns

have fewer LOCs dhn the lower quality programs, an equal number of aurs results in a higher error per

LOC rado dan die lower quality program. In fact, if a lower quality progrnm had five times as m y

LOCs than die mare succinct progrun, then one eriro in the high quality progrnr would have - emir

per LOC ratio equal to the lower quality progran with five ermr. In other words, if these two programs

we offered to satisfy the same requiremem, where one has five error while the other has one errr. dien

by using error per LOC, they we deemed to be of equal quality. These paradoxes exist becaue the

premise of using LOCs as a measure of softwae is dim the LOCs dhmzes we the solutiont w a softwae

requiremnit, rather dum the functiomulity of die softwre.

11.3 Albrecht's Fumctio Points

Function points we fundamentally diffaent diau lines of code. The premise of function point

analysis is to measure the soflwarejfumcdoaary delivered to dhe um. The trmi 'functiomality' shifts the

emphasis away from how the LCs implement the softwar., and instead emphasize who doe softwae

does. For example, ifa payroll program is supposed to prompt the user for a social security mumber, locat

tat number in an employee record, and then display dim employee's end-of-moth pay, then Me , g

9

performs three functions: receives input, processes a record, and outputs the results. When counting

functionality in this way, the LOCs used to implement the softwar ame inelevant, and the focus is on

the software behavior. Continuing with the payroll example, if 10 progrmunmers developed software to

perform the same payroll functions, there would be 10 diffeent LOC counts due to individual differences

and the inherent variety associated with alternate software solutions. However, the number of functions

provided by those 10 programmers would be identical. Mw software is the result of a request by the user

to perform these functions, and function points we a measurement of the functionality requirex by, and

valued by the user of the software. Allan Albrecht, an IBM researcher, introduced a means of quantifying

software functionality by assigning points to five categormies of functions based on their value to the user.

Table 1 introduces the categories of function points.

Table 1

Function Count (FC)

Type Description Simple Average Complex

IT External Input x3 x4 x6

OT External Output x4 x5 x7

Fr Logical Internal File x7 xl0 x15

El External Interface File x5 x7 xlV

QT External Inquiry x3 x4 x6

"* Outputs reitems of business information processed by the computer for the end user.
" Inquiries are direct inquiries into a databae or master file that look for specific data,

use simple keys, require immediate response, and perform no update functions.
"* Inputs are items of business data sent by the user to th computer for processing and

to add, change, or delete something.
"* Files we data stored for an application, as logically viewed by the user.
"* Interfaces are data stored elsewhere by another application but used by the one under

evaluation. (12:5)

Since Albrecht uses the functional value of the software as determined by the user a a guideline far

subjectively identifying function points, there are significant ambiguities. 7b reduce ambiguitie associated

with assigning function points, Brian Dreger dedicated an entire book to enumeratig rules for assigning

function points. To identify outputs, Dreger says "count each unique data or control output procedurally

10

generated that leaves the application boundary" (12:10). 7b identify inputs, "count each unique user data

or control input tht enters the application boundary and also updates (adds to, changes, or deletes from)

a logical internal file, data set, table, or independent data item" (12116). Inputs and outputs are considered

unique in so for as they have different formats or require differet processing logic. Since the function

point analysis is independent of any language, the measurement avoids the distracting and paradoxical

details of lines of code (1:1). Ther ae three steps in determining function points.

First it is necessay to classify and count the five user function types delivered by the development

projecL hese are external input, external outputs, intena file types, interface file types, and iquy

types. Each of the functions that arwe asigned to one of the five categories is further classified as: complex,

average, or simple. The weights in Table I show how the total unadjusted function count (K) is compued

The second step is to calculate the processing complexity (PC) by ranking 14 environmental factors

according to degree of influence on a scale from zero to five. The factors me: data communications,

distributed data or processing, performance objectives, heavily-used configuration, transaction rate, on-line

data entry, end user efficiency, on-line update, complex processing, reusability, conversion and installation

ease, operational ease, multiple-site use, and facility change (2:640). The processing complexity adjustment

(PCA) is:

PCA = 0.65 + (0.01 * PC) (1)

Third, the delivered function points (FP) we calculated by multiplying the unadjusted function

points times the adjustment factors (12:71):

FP = FC * PCA (2)

Jones notes that aftea ten yews of use, "the current national average for software productivity at the

project level in the United States appears to be about five function points per staff-month" (18:11). TWring

into account all the staff-months of an entire software develonent corporation and the function points

delivered, Jones says a strategic or corporate productivity measurement averages 1.5 function points per

staff-month. These numbers are for all types of projects and Jones notes that for mamgement information

system (such as SCV's system), the productivity is higher t= average at about eight function points per

11

staff-month. Jones also says that a maintenance programmer can take on support of a baseline ranging

from 500 to 1500 function points, depending on the stucturedneu of the design (18:81,147).

Charles Behrens studied 25 development projects in the data processing oganuiaon of a large

fnancial instituion He chose an hour as the unit of time and then calculated the output in function points

per hour and also the unit cost in hours per function point. In 1980,11 projects ranged in size from 27 to

599 function points and from 600 to 28,700 hours. Productivity measures ranged from 9.7 to 47.9 hours

per function point. Tbe mean was 183 hours per function point. In 1981, 14 projects ranged in size from

22 so 435 function points and 85 to 10,600 hours. Productivity measures ranged from 2.1 to 23.4 hours

per function point with a mean of 9.4 (4:649). Tbe interesting effect revealed in Behrens' research is that

when unit costs are plotted against function points, the line of best fit is curving upward. The intepretation

is that "as projects become larger, their unit costs become higher as shown in Figure 2, suggesting that

everything else being equal, small projects are mom productive than large projects" (4.649).

Unit

C"~

Pobot

Figure 2. Behren's Research

Darlene Brown described methods of calculating productivity ising function points a=d included

maintenance activities. She chose a labor-month as the unit of time and calculated the ratio of function

points delivered to the number of labor-months. She divided maintnance into two groups, enhuncement

activities and support activities. The diffeence between the two is that enhancement changes the functions

while support does not change the functions but effort is spent to satisfy some user need. The measure for

enhancement productivity is the change rue and for support is the support rate (8:27-28). Darlene Brown

discusses the use of productivity rates as a means of predicting future work efforts. She distinguishes

forecasts by new development, enhancement, and support. For each case she says that after the analyst

has determined the number of function points that will be developed, enhced, or supportd, a simple

12

multiplication of the appropriate rate times the function points will give the number of labor months to

do the job (8:30).

Several authors advocate that software metrics and estimation techniques should be tailored for

a specific site. Ian Sommerville states that "the parameters associated with different models ae highly

organizational dependent" (31:516). Tom DeMavo, offers the insight that, "msoftware metrics cannot be

treated as off-the-shelf products, and that organizatimons that adapt techniques and measures for their own

use always seem to come out ahead" (10,160). Bryan Ratcliff and Anthony Rollo say that due to an

organization's development paradigm function point analysis "will require substantial tailoring to fit an

operational development framework" (26:80). Michiel van Genuchten conducted a survey of software

engineers opinions as to why software projects are delayed and found that "the reasons were specific to

the engineering environment in question because of differences among the software egineers, the type of

software developed, and the organization of the department" (37:585).

June Verner and Graham Tate describe a case study for a development project that used a 4GL

called ALL. The goal was to quickly build an information system for a correspondence school They

used function point analysis to estimate the size of the project, then they converted the function points

to COBOL and adjusted for the presumed benefit of using a 4GL. They underestimted actual effort by

23 percent, but underestimated the schedule by only 3 percent (3A15-22). The results suggest that the

analysts had a consistent measure of software size using function points before the code development.

Graham Low and Ross Jefery repor that their studies indicate that "function points appear to be a

more consistent a priori measure of system size than lines of code" (19:71). Low and Jefery report the

results of an empirical research project into the consistency and limitations of function points as an a priori

measure of system size compared to the traditional lines of code measure (19:64). They discuss some lines

of code (LOC) attributes and variatons and then state that using LOCs requires an "a priori estimat of

system size based on past experience of the person performing the estimate with similar projects and/or

systems" (19:64). The researchers go on to say that to the best of their knowledge "the conistency of

LOCs as an a priori measure of system size has not been tested" (19:.64).

The concept of counting function points has been studied extensively, but not without criticism.

Boehm notes that function points suffer in terms of clarity and objectivity (6:482). Charles Symons

analyzed the use of function points on some lag projects and repoted some problem with umbiguity.

He devised a new approach called Mark U function points (32:5).

13

1.4 Symom' Mark 1 Function Points

Symons thinks that Albrecht's components are difficult to identify in a relational database envi-

ronment, and difficult to interpret for on-line interactive transactions on the same screen. He questio

bow Albrecht awrived at the weights and levels of complexity when counting unadjusted function points.

Symons does not think that the list of 14 environmental factors is exhaustive and that each of them should

not carry the same degrees of influence. Also, he criticizes the lack of a measure of the internal processing

complexity and the treatment of system components as discrete rather than integrated (33:18-22).

Symons has augmented the function point concept and calls it Mark 1 function points. It is based

on a similar premise of measuring functionality as Albrecht's function points, except that Symons' method

is mor oriented towards development effort, than user value. Instead of five categories, Symons has three:

inputs, entities, and outputs. The input and output categories also include Albrecht's inteface category.

For the new entity category. he applies entity-relationship analysis. For the purpose of counting function

points, entities can be thought of as a combination of Albrecht's files and inquiries.

Identifying the complexity of each component is addressed by "counting the number of entity-types

referenced by the transaction-type" (32:5). Referenced means create, updated, rad, or deleted. The entity

model in Figure 3 shows how entity types relate to each other and the lines with three prongs at one end

indicate a one-to-many relationship between entities, (for example, a single customer can be associated

with many orders).

CUZ4MW

Al

Figure 3. Entity Model (33:26)

14

Symons' 'tansaction' construct, is "a unique input/process/output combination triggered by a unique

event of interest to the user, or need to retrieve information" (33:23). Table 2 shows an example of function

points counts by transaction. Based on the tabulations of inputs, outputs, and entities, the Mark 11 formula

Table 2

Unadjusted Function Point Count Example (33:26)

TRANSACTION INPUTS ENTITIES OUTPUTS

Add Customer 53 1 3

Inquire Stock 2 3 10

Add Order Head 20 2 12

Add Order Item 6 5 6

inquire Quantity 2 4 4

Report Stock 1 3 21

TOTAL 84 18 56

for information processing size in unadjusted function points is:

UFP = Wr x NI + WE x NE + Wo x No, where (3)

"• N, = the number of input data element types,

"* W = weigt.I of an input data element type,

"* NE = number of entity-type refernces,

"* WE = weight of an entity-type reference,

"* No = number of output data element types,

"• Wo = weight of an output data element type, and

"* NI, NE, and No ae each summed over all transaction-types (33:30).

Symons added five environmental factors to Albrecht's 14. The additional five factors awe the needs:

to interface with other applications, for special security features, to provide direct access for third parties,

for documentation requirements, and for special user training facilities, such as a training subsystem.

(32:7). These additional five factors added to Albrecht's 14 create a total of 19 factors. An additional 20th

15

factor emenged later, as the need to define, select, and install special hardware or software uniquely for the

application (32:7). Symons calls these factors the degrees of influence (DI).

After analyzing 32 systems, Symons obtained weights which he calls the 'Industry Average Set':

Wi00.58, WE=1.66, Wo- 0 .26 (33:30). The resulting unadjusted function points (UFP) formula is:

UFP = 0.58 x N, + 1.66 x Nz + 0.26 x No (4)

The function point (FP) count is adjusted by the sum of the degrees of influence in the technical complexity

adjustment (TCA) (33:80):

TCA = 0.65 + 0.005 x E DI (5)

FP = UFP x TCA (6)

Capers Jones has prase and criticism for the Mark 11 Function Points defined by Symons. Jones

thinks that Symons' idea of counting entities and relationships adds a new dimension of rigor to function

point counting. However, he also thinks that Symons' shift away from Albrecht's user value basis to a

development effort basis is a step backwards. Jones also says that Mark U Function Points cmi result in

counts that are up to 30% higher than Albrecht's function points (18:97).

II.S Jones' Feature Points

A technique called feature poins was created by Capers Jones. He supplements function points

as defined by Albrecht with a sixth parameter for real-time and system software, by categorizing the

complexity of the algorithms (18:9). There are many definitions of algorithms, but for the purpose of

counting, Jones states that "an algorithm is a bounded compumtionl problem which is included within a

specific computer program" (18:84). He also says the process of assigning the complexity of algorithms

is ad hoc and is in need of a rigorous taxonomy.

The new algorithmic parameter is assigned a weight ranging from one to ten with a default weight

of three. Also, the weight for logical data files from Albecht's average value of ten is reduced to seven,

reflecting the lesser significance of logical files to system software. Including algoritluic considerations

generates higher feature point counts for systems software thm for MIS software. Symoms praises Jones for

intducing a measure of algorithmic complexity, but warn that it is difficult to establish standard categories

16

of algorithms: *Much work has been done to introduce measures for the complexity of algorinhms, but

the data to measure their 'size' are not generally available early in the system life in a form suitable for

a function point metric" (3:42).

11. Halstad's Soitwure Sdesce

An assembly language piogranmer named Maurice Halstead developed a metric he called software

science. He wanted oo count the number of eors, the effort to understand a pogramn, and the effort to

encode a progran (3:1-2). He based his counts on operam= and operands. First, size is computed:

"* n1 = unique operators,

"• n2 = unique operands,

"* n - nI + n2,

"• N1 = total operators,

"• N2 = total operands,

"* size N = N, + N2.

Halstead then used this size computatim to develop a formula for the volume, V. which characterizes

the encoding necessary for a particular program. He also defined potential volume, V*, as the minimum

encoding of a program, but he offered no formula for V* (3:1-2).

V = N x log2 n (7)

He used V and V* to characterize the level of abstraction of a program, L, but since the value V* is not

available, an approximation for L was devised-

2 n2L= -- × -- (8)

nj N 2

Halstead also characterized the effort, E, to uaderstmad a program as the number of 'elementary mental

discrimination' divided by the level of abstraction, implying that the more abstract the pgrm. the easier

it was to understand:

E=N log2 n, esated by N log2 n V V

= L L - L

Bsed on a article by a psychologist that mid humas process betwen five mad 22 elementary mental

discrimations per second, Halseed's experiments seemed to confirm that hypothes with a value of 18.

17

Consequently, he used the value to compute die time, T, to encode a program:

T E (10)

IL7 McCale's Cydomatic Cmpleity

Thomas McCabe devised a measurenent, v(G), for chmaterizing the difficulty of testing softwae

and it is called 'cyclomatic complexity':

v(G) = e - n + 2p (11)

The leter G is a graph representing the paths of flow in a program. e is the number of edges in the

graph, n is the number of nodes, and p is the number of fully connected components (20.308). A rule of

thumb is that a cyclomatic number greater than 10 characteries a progrun that will be diffIcult to test.

However, 'case' statements tend to drive up the cyclomatic number, and they ae subjectively considered

an abstraction that makes programs easier to umderstand (and therefore easier to test). Despite the oppuent

simplifying effect of cae statements, they create many paths that require consideration for testing purposes,

and so the high cyclomatic number does characterize that testing problem.

ii.8 Other Sizing Methods

Ther are a variety of other measures of software. Henry and Lewis present man experiment

that introduces a non-destructive method for integrating metrics into a laqre-scale commercial software

development environment" (16:89). They discuss three categories of metrics: code, structie, and hybrid

metrics. Code metrics typically measumre the source code instruction within a single module and have

limited value for the total software system. Strucume metrics concentrate on the overall structure of a

software system by evaluating the inter-comectivity among procedures' (1690). Henry and Lewis used

structure metrics called Kafura's information flow and Belady's cluster metr.

Henry and Kafu characterizd the complexity of an entre system of inumcting modules

(15:510-518). They count the flows into and out of a module as fan-is and fan-outs. The informa-

tion low (IF) metric is based on dte fan-in and fan-out of the modules, and the length of the module which

18

is some complexity metric of the measua's choice. The information flow (IF) is:

IF-length x (fanin x fanout) (12)

Henry uad Lxwis also discussed hybrid metrics which are code mad structure metrics combined. They

*call the heart of their structure memoricste communication database because it widentilles --

lines among modules" (16:90). This is similar to a dafta dictionary. Their co n- mainication database is "used

to Infom a system developer of the proper order an which to rebuild dhe components of a system, based

on the use of specific modules by other modules" (16:91). This is critical information for estimating die

scope and effort of a work order, because a change to one module may require a cheage to other modules

that use the first one being changed.

Another aggregate metric is measured across time. Heak Blaaken discusses "query processing in a

database management system (DBMS) that has complete control over versioned complex objects" (5:1).

These objects are called comnplex because in addition to the complex relationships between data structures,

complex objects record a history of the changes to the object. F~rom the point of view of someone who

manages the software configuration of modules, such a database could store source code and the history

of changes to it. Blanken discusses what he calls 'as-of-queries' and 'walk-though-time' queries (5:2).

An as-of-query retrieves information that was current as of a ceriain time uad date. The more relevant

query for this literature review is the walk-through-time (WTI) query. He state tha a WITI quay could

be constructed "by generating an as-of query for each moment of change" (5:2).

11.9 Estimating Effort and Schedule

Software cost estimating models have a reputation of being inaccurate. Boehm rsate a software cost

estimation model as good if it is within 20 peroent of actua costs 70 percent of the times, within chume

of projects that were used to calibrate the model (6:32). The predictions ae based primarily an the size

of the project, along with a variety of other Wators. John Rai=sturne tha "thee we only two factous that

* ~~affect the duration of a wak: the complexity of the task and the productivity of the perbomnel performing

Wt (25:132). Most models lik COCOMO allw a persouel facto to be clawactrised mad submitted as

izqtu to the. model. Consideuing the interpersonal dynamics involved in softwwe development, a tern of

programmers can have a performance response differient from anothier tern, so it seems reasomble for an

19

oganization thait is tailoring its own model, to track the performance of specific teams as if they were

individuals. Humphrey reports a method for projecting software productivity by collecting data for specific

individuals or for a specific group of individuals working together as a team. He also points out that

individuals' prodctivity follows the individual's learning curve, and so successive development times am

autocorrlated. He cautions that the collected data as unique to an individual or tam:

It should be emphasized, however, that if the database concerns the productivity experience
of one programmer, the projected productivity values are only valid for that individual. If
team projections are desired, relevant tean experience data should be used (17:196).

Lawrence Putnam defined methodologies for estimating effort and schedule for software projects

with different numbers of programmers. He describes small, and medium to lrge projects, with medium

projects having four or more people. Putnam says that there is enough similarity in the group problem-

solving process that groups of four or more people tend to have similar problem solving responses regardless

of team composition. However, for a small group of one, two, or three people, there is greater variation

in problem solving response from group to group due to individual differens (24:216).

I.IO Summary

Mbe quality of a prediction can be no better than the quality of the inputs to the prediction process.

Existing software effort estimation models use size as the primary inpuL Tibs review focused on software

size measurements such as lines of code and function points. The essential difference between LOCs

and function points is that LOCs measure the solution to a software requirement, while function points

measure the functionality in the requirement itself regardless of how many LOCs were created. Otler

popular sizing methods focus more toward measuring the complexity of software based on some form of

software unit interrelationships.

In addition to size, many environmental factors are quantified as inputs to effort estimation models.

These factors are intended to characterize the uniqueness of a given software oqpnization for software

cost estimating tools intended for industry wide use. Finally, cae studies were reviewed that explored the

problem of establishing programmer productivity and predicting project duuution.

20

ilL Mea m Wmn Methodolog

ULI Overview

* ~Data collection muediods were developed to satsfy the researh objective. to estimate die expected

support effort aid schedule gilven die sine of an Oracle database software support rqUesL This Chapter

addreuses the investigative qoesuk im eaed ID software auppr sizing, effort, and schedule meaurement

"* Whot Is the. most meainingful software size measur?

"* How much effort and schedule we required for given levels of support?.

7he guiding principles for selecting a meaningful sizig method is to collect data in a way dhat is:

1. tunmbiguous and

2. easily estimated before the project begins.

In Caiqte Two, Rakos noted that software project estimating depends upon breaking software into

small pieces, but if the pieces are too small the project staff could spend an inordinate anount of time

trying to Identify every last piece. 71%e benefit of fine granularity should not come at a cost that is a large

propcoro of the project iLselL Corinequently. there is a trade-off between having less ambiguity in the

sizing definition at the same time as easy estimation before the project begins.

M.LZ software Uski or Mlesmre

Oracle SQL*FoIIDs mid SQL*Repartu have little if mny algorithmic complexity, and cousequendly all

of the various complexity metrics we of little use. Since SQL*Foms and SQL*Rqxu are represented by

source lines of code, a look at LOC counting was warranted. Upon closer euninatiom LOC~s we not very

meaningful. First, they are very amblgwu as highlighted by Capers Joanes and Barry Boehmn eve says

that, *soun= instructions we not a suniform commodity, nor ame they the essence of the deshed product"

(6:32). In faict, they we even less meaningful in the cms of SQLPFonns, because the L)Cs am normtally

machine generated and possibly uniseen by the programmer. The lIeramu indicates thll. before the project

begins, it is easier so estimate function points than LOC (19A.). The close association off Mcior points

with the; functionality required of the software increased Itn appeal as an indeenent variable chutrcterizing

software size. However, the ambiguous -sprto of inquiries and interfaces hun inputs and output as

defined by Albrecht leaves a lot of 1room for erroneous categorization, and is therefore less objective. Caper

21

Jones points out diat although Dregr's book successfully establishes consistent rules for cowlting function

points, Dreger varies from die way Albrecht counts. 'Notably, Dreger tends so accumnulate, slightly more

kinds of things for inputs, outputs, and inquiries than would be normal when using the regular (Albrecht)

IBM method! (18:98-99). Besides, having to master all the rules that fill a book is not a good candidate

for makting easy size estimates before the project begins. Also, Albrecht's category for logical files ai not

easily applied to relational databases. Symons list other ambiguities. He notices a problem with on-line,

interactive transactions, where the same screen processes inputs and outputs, and he wits several questions:

"* Is the sceen to be counted asuan input or output or both ?

"* Are die logical file references (which we need to know for determining complexity) made from the

input or the output, or both ?

" Is a retrieve-before-update the same as an inquiry ? (33:19)

Of all the sizing techniques reviewed. Mark 11 function points appea to be both unambiguous and

easy to estimate before a project begins. For these reasons, Symons' distinct categorization of inputs,

outputs, and entities will be used.

11.3 Oracle Software Measurement

The first step is to identify the Mark HI inputs, entities, and outputs involved with a given Software

Enhancement Request (SER). Inputs comprise that part of the software associated with display preparation

and data entry validation. Outputs are associated with prepartion for display or printing. Entities involve all

work between the inputs and outputs, such as database accesses and data manipulations (33:n7. Symons

swummarzes:

The task then is to find properties of the input, process, and output components of each
logical transaction type which are easily identifiable, at the stage of external design of the
systems, wre intelligible to the user, and can be calibrated so tha the weights for each of the
components are based on practical experience (32:4).

For die Oracle database management system, SQL*Fonns mud SQL*Reparts components were

mapped to function points as defined by Symons. A trigger step is associated with daon entry validation

and cursor movement, so it was mapped to Mark UI inputs. A SQL*Report did not have inputs counted

since it is not used for data entry into die database. SQL*Forms are based on fields that define how

the output will look, so fields were counted as Mark UI outputs. SQL*RepanS use 'select' statements to

22

extract database entries for subsequent output, so 'select' statements were mapped to Mak H1 output.

SQLFOIIDs have one or more blocks that ame based on database tables or entities, and awe used to retrieve

and manipulate data. The blocks were coeunted as Mark U entities. SQL*Reports am also based on tables,

so tables count as Mark 11 entities. A single SQL*Form itself win counted as a Mark 11 tranisaction, as was

a SQL*ReporL This mapping Mark II function points to Oracle components shown in Table 3 satisfies

both guiding principles for selecting a measurement technique stated in die overview:

1. unambiguous and

2. easily estimated before the project begins.

Table 3

Mapping Oracle Compomeas to Mark H1 Functiom Foluts

Mark H1 Tlrminology SQL*FmmD lbninology SQL*Reporsu Thminology

Transaction A form A report

input Trigger-step n/a
Entity Block Miblk

output Field Select

First, blocks, fields, and trigger-steps ame sufficiently unanbiguous that one cannot be confused

with the other. Second, the mapping allows for easy estimates because the programmer can characterize

software size in temns of familiar and mseaninsgful Oracle coinpm-ent. The programmers provided the

function points count after both the analysis and the design were completed. The environmental factors are

considered stable and not varying across projects, uid so were not used to adjust the function points. An

illustration of the functional model for counting is shown in Ubbl 4, which revises Tibble 2 on page 15 in

Chapter Nwo by substituting SQL*onus and SQL*Reprt termninology, with the Mark U terminology:

23

Table4

SQL*Form and SQL,01epouls Function Point Cout

SQLIVORMS or TRIGGER-STEPS BLOCKS or FIELDS or

SQL*REPORTS TABLES SELECTS

(transactions) (inputs) (enities) (output)
Add-Customer 53 1 3

Inquim-Stock 2 3 10

Add-.Header 20 2 12

Add-Item 6 5 6

Inquire..Quantity 2 4 4

ReportStock 1 3 121

TOTAL 894 118 56

MA Effort and Schedule Measuruementt

Symons measures effort and schedule in units of work-born and caledart-weeks. He defines work-

horns as "one hour of work by one person, including normal personal breaks, but excluding me*o breaks

such as for lunch" (33:84). 7he progrumers recorded the numiber of hours spent exclusively on a given

projet per person. Any hours spent on activities other than the project were not included in the project's

work-hours. For a two-person team, the team's work-how's were the sum of each prograinmer's hours.

The meinrnemeilts were acurt to one tenth of an hour.

The programmers recorded the numnber of calendar-weeks from the day the project begmi to its

completion. The count of calendar-weeks included work on the project and any other demands upon the

porunumme. The count of weeks was for the project and did not vury by Namn composition as did the

measurem~ent of work-hours. The measurements we accurate to one tenth of a five~day week, or about

half of a day.

M.s Daba Collection Program

A data collection program is listed in Appendix H, and was written tOD asist with data collection

in two ways. Fmrt the program will simply promp for the size of the softwmr support1 clwracterimid in

24

terns of Mark II function points tha are added, changed, or deleted Second, the progam provides the

option of 'sizing by analogy' in tie coe of an entirely new transaction being added. Sizing by analogy was

accomplished by scanning Oracle DBMS data dictionary repots. An example of a data dictionary repot

is listed in Appendix F. The data collection program is written in tie Ada language. The propram could

have been written using SQL*Reports, thereby directly accessing the data dictionary at the same time as

providing automated assistance with sizing and estimating. However, the expressiveness and generality of

the language was uncertain at the beginning of the development of the program. With Ada, the development

was uneventful due to the availability of a debugged library of reusable, generic components known as

the Booch Components (7:71).

For purposes of sizing by analogy, the SQL*Forms source code will be reduced to the pals essential

for counting, using a DEC VAX DCL command file listed in Appendix E, that invokes a regular expression

parser, 'fgrep'. The parser reads search patterns from the file fp2re, also in Appendix H. If any lines in

the data dictionary report contain the search patterns, then those lines are written to a different file for

the function point counting portion of the data collection program to read. An example of reduced source

code for a SQL*Form is in Appendix E, and shows trigger steps, blocks, and fields. Symons suggests

computing "Mark II unadjusted function points automatically from a functional model of a system stored

for example in a data dictionary" (32:10). The output from an Oracle SQL*Reports program in Appendix

G for extracting a functional model from the data dictionary is the input to the regular expression paer

that reduces the data dictionary report.

When an analyst receives a software engineering request, analysis is performed and the extent of

changes necessary are identified mad collected. The analyst first invokes the Digital Equipment Corporation

VAX/VMS control language command file that reduces the size of the source code repos to be used for

estimating by analogy. When sizing by aalogy, the data entry pronrun will scan the reduced SQL*Forms

source listing for Mark II function points. The software support requested by the SER will be rorken

out into additions, changes mad deletions of inputs, praoses, outputs and entire forms and/or report.

The data collection program will provide a prompt for sizing, estimating or reporting actual results. After

choosing tie sizing option, the analyst enters a one to five digit SER number, and each member of the

tean workng on this particular SER. A brief explanation is displayed, requesting forms or reports to be

added, changed or deleted to support the SER.

Added means creating a completely new form or report.

25

- Chwed meam that within an existing form (or report), blocks. fields. and/&or steP (Or ON" an

aele•ts) will be added, changed or deleted.

- Deleted means completely deleting an existing form or report.

The analyst is now prompted for one or mnoe of the software support actions for one Or mm forms.

If the analyst chooses to enter forms that need to be added, an explnation appeas te lling that the form size

will be estimated by analogy to an existing form with which Analyst is fnmiliar. If the analyst dhoses to

enter existing forms that need to be changed or deleted, then prompts appear to receive the names of those

forms. The prngira then displays a message telling the analyst that it is scazing the forms I count Mark

II function points, and then pm for changes within the forms that were identfied as requiring changes.

First the program asks how many trigger steps, blocks or fields will be added. Next, it asks how

many trigger steps, blocks, or fields will be changed. Last, how many trigger steps, blocks, or fields will

be deleted. The program then retums to the main menu and at this point the analyst selects the Estimate

option. The screen displays the size of the current SER in terms of Mark I1 function points. At the main

prompt, the analyst can enter a question mark and receive elaboration of the data entry process. After

the SER is completed, the analyst reports work-hours spent on changes and testing, and calendar weeks

elpsed during changes and testing.

m.6 Summary

7b satisfy the research objective, the method of answering the investigative questions related to

software support sizing, effort, and schedule measurement is described in this chapter. As a result of the

liteature review the chosen software size measure is Mark U function points. The reason for this choice

is that Mark II function points ae both unambiguous and easy to estimate before a project begins, and

meaningfully correspond to the software support requirement '7U environmental fact within SCV we

considere stable and not varying across projects, and were not used to adjust the functon points. Mark

n function points re mapped to Oracle databae software components in SQL*Fms and SQL*Reprts.

Software misted with data collection and sizing by analogy, utng the data dictionary reports produced

by an Oracle SQL*Repom program used by the SCV programmers.

26

IV. Estimating MethodoloM

IV.A Overview

Several models for predicting project effort and schedule were cominscted to satisfy the research

objective: to estimate the expected software support effort and schedule given the size of an Oracle

databae software support request.ibis chapter addresses the investitive question related to estimating:

What is the relationship between the size and effort or schedule? In addition to the selection of Mark I

function points as the software unit of measure, Symons' erminology for effort and schediue units were

also used, namely, work-bors and calendar-weeks (33:140-142). Descriptive statistics were used to focus

the regression analysis. The software used for analysis was the Statistical Analysis System (SAS). Withn

SAS a procedure known as PROC CHART provided histograms for the data (28.9.-95) and PROC REG

performed the regression computations (29:773-876).

Having chosen Mark II function points as the metric, it would have been convement to we a

commercial off-the-shelf cost-estimation tool based on Mark 11 function points. A company named Strategic

Systems Technology provides just such a software cost-estimating W called Before You Leap 11. or BYL

U. Symons cites it for its ease of use and flexibility (33:177). Unfortunately, BYL U was not availale

for this research.

IV.2 Population

The populations of interest depend on the composition of the progrnming teams. If one individual

is working on the project, aemn the population of interst is the individual's response to the size of the

software support requested as measured in Mark n function points. If two individuals me working an the

team, then the population of intrest is the response for that pwticulw pair of programme. For a project

requiring two progranners, the need for birpersonal commuication ad coordinUtion adft an additional

activity to the effort, and thereore a different population of responses than for a single progammer.

27

IV.3 Descriptive Analysis

The desc iptive analysis tabulates and summarizes the observed seams' responses to given levels of

software support requests as measured by Mark II function points. The response is measured in work-bours

expended within a schedule of calendar weeks. The statistical software procedure SAS PROC CHART

created histograms of the data coliecwA which are listed in Appendix A. Also. sc, at plots graphically

display the relationship between function points and effort or schedule.

IVA Regressin Analysis

A reg•rssion analysis was peformed to determine the nature of the relationship between the predictor

(Mark U function points) and the response (effort and schedule) by means of a least squares best fit (LSBF)

regression line. Figure 4 illustates a simple regrssion plot relating function points to effort.

Effort Pot

28

IV.. Ind o Variables

7b allow for different teams' responses to the same level of function points, indicator variables

denme team composition in the regression models. Four teams (A, B, C, and D) would be denoted with

only three indicator variables (h, 12, and 13):

"ITam 1, 12 Is
A 1 0 0
B 0 1 0 (13)
C 0 0 1
D 0 0 0

Team D is represented in this model when all three indicator variables are equal to zero. A model with

three indicator variables would have to estimate a slope and intercept for each of the four teams, or eight

parameters (21:351). With 12 observations though, estimating eight parameters reduces the degrees of

freedom to four. Consequently, only one indicator variable was used to denote a two-member team versus

a single programmer, preserving eight degrees of fieedom for estimating four parameters. The indicator

variable assumed the value of one for team D, and zero otherwise. Of the four teams, team D was

subjectively determined to have responses likely to differ the most from other teams. Since team D is

the only team with more than one programmer it has a line of communication between programmer that

the other teams do not have. Teams A, B, and C represent three different individual programmers. These

classifications lead to the initial models for effort and schedule.

IVA Effort Model

Work-Hours = flo + flufp + #21 + 3 Iufp + e.

" I=0 : Work-Hours = Po + #Iufp +e, for teams A, B, uid C.

"* I= 1: Work-Hours = (.80 + #2) + (8i + A) ufp + e, for team D.

IV.7 Schedule Model

Calendar-Weeks = Po+Pufp + 02I+ 03Jufp + e.

* 1=0 : Calendar-Weeks = ao + #Iufp + e, for teams A and B

* I=I : Calendar-Weeks - (6 o+ #2) + (81 + #3) ufp + e, for team D.

Several statistics were calculated from the data uid compared to the criteria in the following sections.

29

IVA F-adtio

The risk of a Type I eror was controlled at a significance level of 0.10 for the F tests.

* Ho: P1 w - = 03

SHa: not all parameters am zo.

Critical Value: The critical value for the F statistic is P(o=0.10,p-l,n-p).

Decision Rule:

- If FO < F-, then do not reject the null hypothesis.

- If F" > F.& then reject the null.

IV.9 Parameters

The risk of a Type I ewo was contolled at a significance level of 0.30 for the t tests.

"* Ho: #I = 0, and Ha: 6 < > 0

"* Ho: #2 = 0, and Ha: 2 < > 0

"* Ho: #3 - 0, and Ha: 3 < > 0

Critical Value:

The critical value for the t statistic is t(ctmO.30,n-p).

Decision Rule:

"* If eil < t, then do not reject the null hypothesis.

"* If el > t then reject the null.

Once a linear model was developed, its specilcalon was asaesd. Because of the smael nmbr

of observations it was not practical to test for het-&-cedinticity.

IV.1O Model Spedkcatlon

A plot of residuals against the independent vkable was exnmned for each model. The nonlinearity

of a model was checked by visually inspecting this residual plot for patterns such as the hump in Fiu

5, or perhaps a 'U' shape.

30

2

0

-1 0

-2 0

Figure s. Residual pl aans Inependent varial

IV.11 Distiution of error terms

The assumption of the regression model is that the aeror tems are normally disbuted with a

constant vaiance. With a very small data set it is very difficult to test for these assumptions. The

normality of the earro term was evaluated by ploting the residuals from each model as a histogram. If

the histogram was reasonably symmetical, residuals were assumed to be normal.

IV.12 Outliers

With respect to X:

The hat matrix staistic was used to detect outliers with respect to the independent variable. The

SAS PROC REG computes the hat matrix, which expreuse finted values as a ine combination of the

dp-endent variables using the elements Of the hat m krix H = X(X'X)-X'. Th diamonl elemets

of the hat matrix (hk) we called leverage values. A leverage value indicates whether ie i-th cwe is

distant humm the cener of all independent variab•l observations. The leverage is considered large if

h > 2 x , whereo = , so hu > -T indlUs ma eutier (21:395-396).

With respect to Y:

The SAS PROC RBE provides studemized deled residuls, which were mlyed to deect otieua

with respect to the dependen variable. Studemized deleted residuals with absolute values 3 tx,m-p-,),

were considered extnme outliers at a level of signilacce of ao.O5.

31

IV.13 Inbmutial Outliers

The next step is to ascertain the influence of outlying observations, using the statistic DFFrTS,

provided by SAS PROC REG. The DF stands for differnce, and D•ITS is the diffrence between:

"• the fitted value for the i-th case when all n cases are used in fitting the regression function and

"* the fitted value for the i-th case obtained when the i-th case is omitted in fitting the regression

funcion.

It is standardized so that the value (DFFJTS)i for the i-th dat point represents roughly the number

of estimated standard deviations that the fitted value changes when the i-th case is removed from the data

set (21:401):

(DFFITS), = (14)

If the influence statistics exceed established cutoff values, further investigation is warrated. For

small data sets, the observation is considered influential if DFFIrS > 1. If observations tested as influential,

an in-depth analysis was performed to determine if the outlier was the result of measurement errr or some

other distortion, otherwise a cursory analysis was done.

When a linear regression model is fitted to a data set with a small number of observations
and an outlier is present, the fitted regression may be so distorted by the outlier that the
residual plot suggests a lack of fit of the linear regression model in addition to flagging the
outlier (21:122-123).

IV.14 Collinearity

Collinearity is a problem wising from two or more depemdent variables being highly correlaed with

each other, and me coincidentally explaining the same total sum of the squres. rhe overall question when

testing for collinearity is: what is dhe significance of the relations among the predicts?" (27:M37) When

predictors me correlated, the regression coefficient of any predictor depends on which other predictors

me included in the model, and which am left ouL. Four key questions that cum be answered easily if

predictors me uncorrelated:

1. What is the relative importance of the effects of different predictor variabs ?

2. What Is the maignitude of the effect of a given predictor on the respmse variable ?

32

3. Con we drop one or more predictors without signilicanty affecting the explanatry power of the

presumed model ?

4. Should mny other predictors be included in our model ? (27:37)

Condition numbers, tolermnce (TOL), and R2 were examined for indications of cOflinearity. Ther

wre actually two measures of R2. The more common one is in the. ANOVA table and it is based on the

dpd tvariable Yas afunction ofthe independentvariables, or Y =f(Xi,X 2, X3,X 4).adit wifllbe

denoted as 4 ~.x. For the purposes of collinearity diagnosis, another coefficient of determination is used

which is based on fth independent variable in question being a function of the other independent variables,

Or XI = f(X 2 ,X3,Xi), andidwiullbedeniotedasR,2_

Collinearity and tolerance diagnostc examined indicators of correlation anong independent vari-

ables, using the SAS PROC REG options TOL mnd COLLINOINT (coflineurity with no intecept column

in the design matrix). Collineiarity exists if a condition number is greater than one. f the, coudidoem

amuber :, 10, then the model may be adversely affected by coflineauity. The TOL option request the

tolerance values for the parameter estimates based on R~x. With TOL = 1 - Rx2, a TOL -c 0.10 may

indicate that collinearity is influencing the least square estimates. fTh coeffcient of determination from

the ANOVA table, 42.X, was compared against Rj2 = 1 - TOL. f R4..x <&q, then couiemty was

detemined to be present

MIS. Preditia lotervals

A new observation of work-hours or calendar-weeks corrsponding to a given level of function

points is viewed as the result of a new vrial, independent of the vrials on which the regession mnalysis is

lised& Predictio of a new observation is subject tow.

"* variation in possible locations of the distribution of work-howns or caedawekd

"* variation within the probability distribution of work-hour: or caedrwes(21:81).

Since the trit mean response is unknown, with a=0.20 the point estimator kY% win be med to

construct a prediction interval:

ib- tams-p XC 5lyb(mWW : Y1 :5 i't + tasP X ay,(gw) (5

33

IV.16 Summary

Data was collected and ia displayed in Appendix A along with dewipve smstics from SAS

PROCs CHART and REG. The progranmers' effort md schedule respones to a given level of support

wer mdeled with indicator viables. After ma uasessment was made of dhe model speclfcalon, esch

model was tested. Then a final effort and schedule model was chosen and uessed.

34

V. Analysis

V.1 DesmitWv

lMw observations listed in Appendix A on pgep 58 were collected fron aDl personnel available tD

participate in doe resech. In addition so doe enlisted progranmer turnovers, the SCV software support

environment maitioned so a new contracto organization duiung this data collection. 7he previous support

conuiat was terminated umd a new company began supporting the AFIT Oracle bueline at about the time

data collection began. As a consequence Oracle databas support activity was below notmal Uwoughout

the dam collection period. lime dam include Mak II function points supported by a paticulw Software

E~nhuicemnem Request aid dhe numnber of work bourus expendedl by due amu towards coding and tMsting

the SIR during a period of calendu-weeks. The data was collected per prograunming tem., per project.

Twelve observations were collected huon AFIT/SCV persounne during die period April through June 199

aid we summarized in Mhbe 9 in Appendix A on page 58. ibree of dhe observations were for meuns

coiriMed of two enlisted pn~romunmers, and nune were for individuals. Three of the observations were

for a single contractor, and doe rest were for enisted programmers. Five were for SQL*Forms support

uid seven for SQIPReports. A curnory inspection of the doa showed some anomalies in the schedule

observations. Team C appeared to have a consistently higher response to a given level of function points

than the other mam.s lMe obsevations are considered aeccmaf because the dama collection was carefuly

conducted. lMe significuit difference in the tean C response cam be attributed to the fact that tam C was

interrupte frequendy during period of tim when the new company was sefttn into the, SCV environment.

These unique interruptions wre special coase of variation aid we not likly to recu. The teamn C schiedule

response will be deleted for fte purpose of building a schedule model Theffort observations for tern C

will not be deleted because in splte of die interuptions, die applied effort was nam unusual.

V.2 Regusule

lime SAS procedure RIO was used so test doe models for predicting effort in wonk-hour aid

* ~schedule in calmnder-weeks bused on doe number of function points supported. 5usd on prelimnaruy

analysis, an indicator variable was introduced for quanitifying the two cuses as described in CptrFour.

The indicator variable (1 tW= on the value of one for die observatons of tern D, aid amo othewise

35

V3 Effo" Model

VJ.I Descriptive Statstcs

Them wer 12 observations used to build dtis model. The effort model describes the wrationship

between the prdictor level of function points and dho effort response in work-horns. Most of the

observations we at a level of 10 function points or less u shown in the hisiopan in Appendix A on

page 58. Te scauer plot on pae 60 highlights the prqondance of dma at 10 function pains or lea.

There is a generaly imen appewu to the relationship between functio points ud wark-hours, but with

only two observions great than 10 function ponts the possibility ofa nnlinear relatiomhip exists. For

the purposes of this resemeb a liwar relationship a asumed.

V3.2 Indicator Variables

The values of the indicao variales ame

" I a 0 if eln A, B, or C, (sinleprogrnners).

" I = I if lean D (two xogranmei).

MODEL : WorkHours = 0.538052 + 1.992678 x ufp - 10.814188 x I + 2.175083 x lufp (16)

Tea. A, B, C : WorkHours = 0.538052 + 1.992678 x ufp (17)

Tiam D : WorkHours = -10.276136 + 4.167761 x ufp (18)

200Ism 200in

50 fp 30 f
Tom A. B,C TrnD

Rlgre 6. Effort Mode Regremlom Lbs.

36

V33 Coefcient of Determination

In Appendix B.1 on page 62 the R2 value for this model was 0.9759, which indicates that 97.6

percent of the estimating e=r when the estimate is baed on the mean response is explained by the

hipbetween hours and function points.

V3.4 F-Ratio

Critical Vaue: The critical value for the F statistic is F(auO.10,3,8)-2.92 (21.636).

Decision: The F* value in the ANOVA table in Appendix B is 106.134 which is greatr than 2.92.

so reject the nuln hypothesis.

Claim: The probability of obtaining an F-ratio greater than 108.136 if hours was not a function of

UFP is less than 0.0001. The relationship appes to be very significant.

V.3-5 Parameter Tests

Critical Mlue: The critical value for the t statistic is t(eu0.30.8)-l.lOS (21:630).

Decision: The values of the t-statistics and p-values for the parameters from the ANOVA table, and

the decisions for each pammeter ame summarized in Thble 5. The least significant regression coefficient

Table 5

Effort Model Parameter T1sM

TERM PARAMETER t STATSIC p VALUE DECISION

ufP A 11AM 0.0001 Reject H.

I 12 1.545 0.1609 Reject H.

I Iufp 103 s1i1 o1oooI Reject H.

was #2 which was signifcant at the 0.16 level of confideno which exceeds the criaerion value of 0.30

by a comfortable margin.

37

V3.6 Model Specification

Residual plots aginst the independent variables in Appendix BI on p 63 did not reveal any

ptterns that would indicate a nonlinear relationship.

V.3.7 Distrlbution of the Error Terms

The error distribution for the effort model in Appendix B.2 shOwS some skewness to the righL. With

only 12 observations, however, it is not certain whether or not the error terms are normauly distribued.

For this model a normal distribution is assumed.

V3.8 Outliers
The criterion value for identifying outliers with respect ID X for this model is n - = 0.75.

n 12

rom Appendix B.3, observations thme and nine had leverage values of 037612 and 039024 respectively,

exceeding the criteria. These observations have the two laget function point values, 50.62 and 32.36

respectively. The next largest observation had 9.8 function points.

The criterion value for identifying outiers with respect to Y using RSTJDENT for this model

was t(a=0.05, 7) - 2.365 (21:630). Only observation six exceeds this criterion with a value of 2.40519.

Observation six had only 1.92 function points but yet took 17.8 ours to complete This was a large number

of hours for the small number of function points. The next la•gest RSTUDENT was observation three

with only 1.4447, which is not a significant value.

V.3.9 linuendial Outlers

The outliers examined for influence are ftee, six, and nine. From Appendix B3, observations thre

and aine had DFFITS values much greaw than the criterion value of one (9.2372 sad 31l71 mspectively).

These were the two obseradons identified as extreme ouliers with rmpect o X and observations three and

nine have the two highest ufp counts. If they were I be removed from the data, the estimating equation

would change significantly. Since the software size measurement in function points was exact and #my

effort measurement earr was likely neglible, observations three uad nine were nt removed for building

the model. Observation six, the outlier with respect to Y has a DFFIrs value clase to one (0.9597), but

does not appear Io be an infuentia outier, and it is a valid although pearp ram observatio. No valid

reason was found for removing any of the outliers.

38

V3.10 CoUinearity

In Appendix B.3, the larst condition number was 2.6A931, which is significantly less than the

criterion value of 10. The smallest toleanwe value was 0A371 for IURP. This means that when regressing

lUFP against the remaining independent variables in the model, the R4 would be 0.5629. This is not a

large value, considering the 4 .X for the model is 0.9759. Colfinearity does not appear to be a problem

in this model

V3.11 Prediction Intervali

The prediction intervals for teams A, B, C, and D are listed in Appendix BA on page 65. Most

of the predicted values exceeded the actual values. The prediction for observation nine was equal to the

actual value of 125 work-hours. Observation nine at a level of 32.36 function points is predicted to require

125.4 work-hours plus or minus 12 work-hours, 80 percent of the time. For observation three, the effort

response to a level of 50.62 function points was predicted to be 101.4 plus or minus 13.9 work-hours, 80

percent of the time. The prediction for the influential observation three was the next best at 101 work-hours

compared to the actual 103 work-hours. The next best was observation 11 at 4 work-hours predicted for

1.7 function points with 3.6 work-hours actually observed. Predictions for levels of function points at

observations one, five, and 10 were also acceptable. Observation six which happens to have a very lamge

residual value at 13.4 had an actual value outside of the prediction interval.

The relationship between actual effort response and predicted is plotted in Figure 11 on page 65.

It shows many close predictions at low levels of function points and the two close edictions out at the

influential points.

V.3.12 Closing

In spite of the small data set. the effort model seems to predict rather well up to 50 funcion points.

The indicator variablu produce a two-member team model that show an effort response at a raft slightly

more than twice that for the on-member model. This seems to imply that there is inefficiency associated

with two programmers collaborating on a project.

This effort model can be used to estimate the effort response up to 50 funtion points. However. this

range includes a gap from 10 to 32 function points that is interpolated by the model, with the possibility

39

that a nonlinear relationship exists in this interpolated region. Additional data collection in this r11ge will

reveal the cerainty of model.

VA Schedule Model One

V.4.1 Descriptive Statistics

Afke deleting three observations for tam C, there were nine observations used to build this model,

and am lissed in Appendix A on page 58. This schedule model describes the relationship between die

prdictor level of function points and the schedule response in calendar weeks. Indicator variables were

used to differentiate between single and two-programmer efforts.

As with the effort model, most of the function points we at a level less than 10 with two observations

above 10. The histogram in Appendix A.3 shows that die distribution of weeks is somewhat differmt than

hours. Of the nine observations there are six that are less than one week and thre greater than three

weeks. The two highest values of weeks correspond to the two highest function point levels. The second

highest level of function points required the highest response at four calendar-weeks. Observation one has

a schedule response of three weeks for only 3.58 function points, because the programmer encoumered

dificulties scheduling testing with the user.

Looking at the scatter plot in Appendix A.3 without observation one for team A at three weeks

depicts a relationship similar to the effort model, but with observation one it looks almost nonlinear. For

the purpose of this researh a linear relationship is assumed.

V.4.2 Indicator Variable

* I - 0 if tem A or B (single progrumer).

I I if team D (dual pogrmmer).

MODEL: CalendarWeeks = 0.987992 + 0.038427 x ufp - 1.142614 x I + 0.089399 x lufp (19)

Teran A, B : CalendarWeeks = 0.987992 + 0.038427 x ufp (20)

Tlea D : CalendarWeeks = -0.154622 + 0.127826 x ufp (21)

40

5 wk S wk

50fp 50fp
Team A. B Tam D

Figure 7. Schedule Model One Regression Ln

V.43 Coefficient of Determination

In Apendix C on page 66, the R.x for this model was 06894, which indicates thi 68.9 percent

of the estimating eam when the estimate is based on the mean response is explained by the relationship

between weeks and function points.

V.4.4 F-Ratio

Cric Value: The critical value for the F statistic is F(eu0.10,3,5)-32 (21:634).

Decision: The 1O value in the ANOVA table in Appendix C is 3.7 which is just grealer than 3.62,

so reject the null hypothesis.

Claim: The probability of obuaining an F-ratio gieser than 3.7 if hour wu not a function of UFP

is less dtn 0.0965. The relationship qpwrs to be signitcic.

V.45 Parameter Tests

Critical Vaue: The critical value for the t saistc is t(amO.30,S•)1.156 (21.630)

Decision: Mhe values of the t-slatistics and p-values for the perameMs fron the ANOVA table, mad

the decisions for each parmuewe ae sumnized in Table 6. TMe least signifi regression coeffcent was

41

Table 6

Schedule Model One Parameter Teast

TERM PARAMETER t STATISTIC p VALUE DECISION

ufp I1A 1.616 0.1671 Reject He

I 02 1.168 0.2954 Reject H.
Iulfp 13 1.788 0.1337 Reject lie

162 which was significant at the 0.295 level of confidence which barely exceeds the criterion value of 0.30.

V.4.6 Model Specifcation

Residual plots against the independent variables in Appendix C.2 on page 67, did not reveal any

patterns that would indicate a nonlinear relationship.

V.4.7 Distribution of the Error Terms

The error distribution plotted on the same page for the schedule model is skewed right, but with

only nine observations it is difficult to ascertain the error distribution. For the puposes of this research

a normal error distribution is assumed.

V.4.8 Outliers

The criterion value for identifying outliers with respect to X for this model is 1z = 2 = 0.89.

In Appendix C.3 on page 68, observations three and nine had leverage values of 0.6296M and 0.9 4

respectively, exceeding the criteria. These observatious have the two largest function point values, 50.62

and 32.36 respectively. The next largest observation had 9.8 function points.

The criterion value for evaluating outliers with respect to Y using RSTUDEN r for Uais model was

t(einO.05, 7) w 2.365. Only observation one exceeds this criterion with a value of 5A7349. Observation

one had only 3.58 function points but yet took 3 weeks to complete. This was a large number of weeks

for the small number of function points. The next largest RSTUDENT was observatoin five with only

1.047, which is not a significant value.

42

V.4.9 Ibuential Outliers

The outliers examined for influence are one, three, and nine. In Appendix C3, observations

one, three, and nine had DFFTrS values much greater than one (2.129, 3.5M7, and 9.369 respectively).

Observations three and nine were identified as extreme outliers with respect to X. If they were to be

removed from tde data, the estimating equation would change significantly. Observations three and nine

have the two highest function point counts. Any effort measurement error was likely neglible and the

function point count was exacL Observations three and nine were not removed for building the model

Observation one, the outlier with respect to Y, has a high isponse to a low level of function points because

the programmer encountered difficulties in scheduling testing with the users, so it is valid and will not be

removed. No valid ream was found for removing any of the outliers.

V.4.10 Collinearity

In Appendix C.3, the largest condition number was 2.596, which is significantly less than the

criterion value of 10. The smallest tolerance value was 0.4493 for lUFP. This means that when regrssing

lUFP against the remaining indepedent variables in the model, the R42 would be 0.S517. Since the

R. x for the model is 0.6894 which is larger than 0.5517, collinearity does not appear to be a probiem

in this model.

V.4.11 Prediction Intervals

The 80 percent prediction intervals for teams A, B, and D are listed in Appendix C.4 on page

69. About as many of the predicted values were higher than the actual values as they were lower. The

prediction for the influential observations th and nine were very cloe, as well as observation six. The

prediction interval for observation thr seemed somewhat wide ranging from 1.1 to 4.8 weeks for 50.62

function points. The actual value of observation one, which encountered test schedule difficulties, exceeded

the upper bound of the prediction interval. The other observatons were in the intervals but all observations

except three and nine had negative lower bounds on the prediction interval.

The relationship between actual schedule response and predicted is plotted in Figure 12 on plg

69. It shows many close predictions at low levels of function points, and the two influential points ame

somewhat close to the predicted values.

43

V.4.12 Closing

Even with a small data set, the schedule model seem to peodi fairly well for values of up to

50 function points. The indicator variables produce a two-member team model that show a schedule

response at a rate slightly more than three times that for the one-member modeL This indicates that there

is inefficiency associated with two programmers collaborating on a project.

Tiis model can be used to estimate the schedule response up to 50 function points. However, this

range includes a gap from 10 to 32 function points that is interpolated by the model, with the possibility

that a nonlinear relationship exists in this interpolated region. Additional data collection in this range will

reveal the ceainty of model.

Since the T term in Schedule Model One was the least significant at a 0.295 level of confidence,

the next model will examine the relationship without the T term.

V.5 Schedule Model 2

V..1 Descriptive Statistics

This schedule model describes the relationship between the predictor level of function points and the

schedule response in calendar weeks. Only three parameters are estimated in this model, the coefficients

of ufp and Iufp, and the intercept. The least significant term, 'I', in Scheduale Model One, was dropped

for this modeL

V.5.2 Indicator Variables

The indicator variables assume the values:

" I 0 if team A or B (single prgranmer).

"* I = 1 if team D (dual programmers).

MODEL : CalendarWeeka = 0.68226 + 0.046844 x ufp + 0.049292 x Iufp (22)

Teaui A, B : CalendarWeeks = 0.68226 + 0.046644 x ufp (23)

Tea D : CalendarWeeks = 0.68226 + 0.096136 x ufp (24)

44

5 Wk Swk

50fp 5ofP
Tom A. B TmnD

FIgure 8. Schedule Model Two Regress Lines

V.5.3 Coefficient of Determination

In Appendix D on page 70, the R4 .x for this model wu 0.A046, which indicases that 60.5 percenm

of the estimating error when the estimate is based on the mean response is explained by the reladonship

between calenddo-weeks and fucton pomm, uad his is less than Schedu Model One.

V.5.4 F-Ratio

The critical value for the F statistic is F(oaO.10, 2. 6)=A (21.634).

Decision: The FO value in the ANOVA table in Appendix D is 4.5 which is pesur than 3.46

so reject the null hypothesis.

Claim: The prbailiy of obdaning an F-raio rinaer tihn 4-M8 if weeks wu not a ranction of

UFP is less don 0018. The relationsh• p qiVEP'- to he signiAcuit.

V.5.5 Parameter Tests

Critical Wue: The critical value for the t saistic is t(auO.30,6)-.13M (21.630)

Decision: The values of the t4isatc mad p-values for te paameters from die ANOVA te amd

the decisions for each p nmmu e maesunmulud in uhle 7:

45

Table 7

Schedule Model Two Paraler Ta

TERM PARAMETER t STATIISTIC p VALUE DEICISION

ufp 2.007 0.16 Reject H.
Iufp 12 .317 0.2358 Reject HE

The least significant regression coefficient was #2 which was significant at the 0.235 level of

confidence which exceeds the criterion value of 0.30.

V5.6 Model Specification

Residual plots against the independent variables in Appendix D.2 on page 71 did not reveal any

paterns that would indicate a nonlinear relationship.

V.5.7 Ditribuion of the Error Terms

The histogram on the same page shows a right skew due to observation one, which encountered test

schedule differences. With only nine observations it is difficult to tell if the am awe normally distributed.

A normal distribution is assumed for the purposes of this model.

V3.8 Outliers

The criterion value for identifying outliers with respect to X for tos model would be Z -

9= 0.67. Fkom Appendix D.3. observations three and nine had leverag values of 0..725 and 09724

respectively, exceeding the criteria. These observations have the two Imgest function point values, 50.62

and 32.36 respectively.

The criterion value for identifying outliers with respect to Y for this model using RSTUDENT for

this model wa t(0=0.05, 5) - 2.571 (21:630). Only observation one exceeds this criterion Observaon

one had 3.58 function points but yet took three weeks to comple. Tmis was a iag number of weeks for

the small number of function points, due to tsting difficulties. The next lest RSTUDENT was only

1.26, not a significant value.

46

V.5.9 hr•ledal Oudiers

The outliers examnued for influence we one, three, and nine. Observations one, three, and nine had

DFFrrS values much greater than one (2.83, 3.56, amid 9.37 respectively). Observations three and ine

were identified as ma extreme outliers with respect to X. If tey were to be removed from the data the

estimating equation would chage signictly. Observati one, dt otli with respect so Y, is valid

mad was not removed. No valid rmao was found for removing any of the outliers.

V.5.10 Collineariry

In Appendix D.3 the largest condition number was 1.5, which is significantly less than the cierion

value of 10. Both tolerance values ae 0.85, so if Iufp were regressed against fp, the Rx, would be 0.15.

Since the R2.x for the model is 0.60 which is much laiger tant 0.15, coilinearity does not appear to be

a problem in this model.

VS.11 Prediction Intervals

The prediction intervals for teams A, B, and D are listed in Appendix DA on page 73. Most of

the predictions were higher than actual values. Th predictions for the influemtial poinuts three md nine

were very close, as was observation two. The actual values for observations four, five, six, and eight w=e

within their predicted intervals, although the lower end of their intervals were negative. The actual value of

observation one was 3.0 caleadar-weeks and was beyond ft intervals upper bound at 2.3 clendar-weeks.

The relationship between actual schedule response mad predicted is plotted in Figure 13 on page 73.

It shows several close predicted schedule responses at low levels of function points with somewhat wore

predictions than Schedule Model One in Figure 12 on page 69 at tie influential points.

V.5.12 Closing

The indicator variables produce a two-member team model that show an effort resone at a ame

slightly more thn three times that for ft one-member model. This indicates ot there is schedule

inefficiency associated with two programmr collaborating on a project as oposed to one programmer

wodking on the project when an equal intercept model is used. This second schedule model doesn't seem

to predict as well as Schedule Model One for one or two-member teams up to 50 function points. ma

range includes a gSp from 10 to 32 function points that is interpolated by the model, with the possibility

47

that a nonlinear relationship exists in this intierpolased region. Additional data collection ina this range will

reveal the certainty Of model.

V.6 SWUmmay

In this chapter die software support at a given level of (baction points was related to the effort and

schedule to provide that support Ilbs effort model wus developed with all 12 observations, but the. two

schedule models weon developed with nine observations. Thee schedule observations wer deleted because

they were a resk of special causes of variation. Most of the responses we at a level of 10 (inaction points

or less. 71w two observations at 32 and 50 funaction points were most influential and resulted in a model

that interpolates the responses to requests for software support in the range of 10 too 32 function points.

lbs use of indicator variables revealed apparent effort and schedule inefficincy when two progran-

mers work on a project as opposed to one. flw ineffisciency was more pronounced in the schedule nmodels

dian the effort models. lMw prediction intervals showed a tendency of *th models to overestimate most of

the responses to observed levels of function points. lbs effort model appeass to be very signiciwnat mad

predicts reasonably well. Most of the actual values of respomases wer within the 80 percent prediction

interval. Schedule Model One predicts farl well mad better dian the second model. Imiproved schedule

estimation will require mon data first of al, and most li"y additional predficsors. lbs small nmuber of

observations prevented a conclusive determination of the distrlbudoin of enutrm~us. With the exception

of the three schedule observations that wer deleted, the remaining observations wee subject. to typical

variations within the population of interest. Schiedule Model One will be aused to, predict schedule for tees

A, B, and D because it is a more significant relationship dan Schedule Model Two.

48

VL Conchulon

A novel cU a s been developed for dfecdy eftiafg the effort and schedule, eQuiW f

Orwcle dambage softwae support using M•r function points as a predimor. The I-in izalion of the

size of the software support in tms of function points was easily and ufnbm• uyqavied before

coding. he relationship between the obsrved effort and schedule responses wad die level of function

pons was - and prediciable

VL1 Meinememt Resais

VI.I.1 Sizing

lbW uamnbiguous mqappng of Mak 11 fiunction points oo Oracle comnponents allowed very easy

estimation of the size of the software support rqadred before coding. Aftker wanly-sis wad deseg wier

completed, the programmers were able to exactly quanify how many inputs, outputs, wad entities would

be added, chaged, or deleted during the software support

VI.12 Effort and Schedul

The measurement of effort in work-hours was gkfwmd. The programmers worked on the

projects with a varying number of interruptions. Mhe effort measurements wier accarafe to one enth of

a hour.

The measurements schedule in calendar-weeks tended to vary significwatly mor then the

work-hous, de mainly to inieuupdons from emergent demands upon the prganmers. The schedule

measurements were accurate to one teth of a five-day week, . or about half of a day.

VL2 -sisf Rumbaf

VI2.. Effort

The relaionship between a given level of function points and the e ffr esponse was found to

be very slgnficwat, with appaet inefficiency reflected in the wopeonr ose. 1 difrence is

evident in the ufp coefficient for the tem D model that is moe thin twice tht for the onpnapmer

model. The effort model Io within two digits of precision i:

Team :A, B, C : WorkHoure = 0.54 + 2.0 x ulp (25)

49

Team D: WorkHour = -10+ 4.2 xufp (26)

VI.2.2 Schedule

7U hematooship between a given level of function points and the schedule mesponse was found to be

significant. with an apparent inefficiency reflected in the two-person respouse. The diffaunce is evident in

the tif coefficient for the two-progrmfaier model die is mo than dhree times dot for the one-prpm..aer

Model. The chedUle Model ID within two digts of precition WL

Team A. B :CalendarWeeke = 0.99 + 0.038 x ufp (27)

Than D : CalendarWeek. = -0. 15 + 0.13 x ufp (8

The validity of pmedictious osin these models will depend upon whether bowi conditons In the

future ate similw to those durng the period of observation used Io build this model. Also, since the model

is based on observations manging up Io 50 funaction points, predictions above that level we less certin. The

models built fiun a small data set and wen very dependent upon the influential point. Most observations

were at size levels less than 10 function points. The influential points wen at much higher levels leaving

a gap that is interpolated by the model.

VU3 R P a mmsadatios

VI.3.1 Mewemerant

Regerfdon h daun collection. a point thug needs so be. nme& is dis the effot and schedu~le, models

predict the work-bours calender-weeks that will be reporsed as the repFa sos toth size level messnand

in function points, ibis is not to imply dhat a propunmer would deliberaly provide umu-eoa F m- am.

but 11he Pthat the pbogrammnrs an bay suppotng the1d mission, and ar likely to spend as kftime

as possible keeping a log of wock-hours spent on a pjbujcL As mentioned wemil, doe levwd of support

activity was lowe than normal, which mitigated any inclination tD secifim dan collection in bvcr of

menga schedul and resulted in the exellent Wality of dWr for this remorcb. However, the reaities

of software support in a denmanding envirornent with tight deadlines will certailuy beathe quality

so

of duw collected, becme no matter how much the, mnasgern claima dat collecting doe is of paramouunt

lmponncodie pmrogiumers know that the bosom line is delivering the. software.

71m measurement of the size of the Kofwue support was based on die progrunmer's completed

analysis and design. An alternative would be to wse information available afte oily the aimlysis is complete

but not the design. With just the analysi completed it would be unreasomeble to ask a juogunmer how

many trigger-steps will be added, clanged, or deleted, but not unseasonable so ask how nmany tdAbl-bse

block wigl be affected by a Software suppor requL Tis early count of entities could be used to either

estmimat the eventual nfhmber of impute and outputs that will be affocted, or to directly estimiate effort and

schedule fhom the number of additions, changes, and *deltons of entitles. Also, since only one project

had more than one transactio Involved, a potential fato could be the number of uansactio supported

in a project. This count would be espeially significant a a predictor of effort and schedule with increased

testing due to die Interactions between rmany transactions. The technaical complexity adjustmenet (TCA)

was held constant. for all of the projects. There may be enough differences within the SCV environment

to justify varying the TCA.

7'he mappings from Oracle components to Mark il function points Seem to characterize the

fucioaity very well, but may not be ;Pe rfet. Specifically. SQLFoims and SQL*Peports we diffierent,

software development tools. The assumnpton is that thee is a high correlatin between the mappings of

each language's components to Mink 11 function points. With such a small study. it is not feasible to tes

this assmption. A possibility for further reseavch would be to define many competing mapping strategies,

and collect data on all projects using all the mappings. Then for SQLforms and SQL*Reports projects

dot required the samne amoun of effort or schedule, find out which mapping straegies cowl them at the

snin level of function points. This would enhance the usefulness of the weighfts

In this research, the size was weighted usin Symons' industy average se. The size of the aoftwore

supportcouldbe aultd oby tansactons, nut, endtitie, adoutpus ttwer addedcleegedor deleted

as shown in lIle 8. A possibility for fumtur esearch would be to run a multiple regression on the imputs,

Multipl. Factors

Addatiom Changes Deletions 70TAL SCV

________ _____weights

Transaction$____ WT

Inputs W,

Fntities W

Outputs ____ ___WO

1TMAL

ACD WA WC WD

Weights IIIIII

entities. and outputs that would provide a set of weights local to SCV. Another possibility would be to,

perform a multiple regression on the count of weighted addition, changes. mad deletions (ACD).

The size of the projects in this research were sufficiently small that it was not difficult to estimate

the exact number of function points tha would be supported. But with larger projects, the difference

in estimated anid actual function points will become uignificant. A possble remedy is to have automatic

change detection using a before and afte function poin count. The dat collection propum in Appendix

H currently provides sizing by analogy, and with some modifications could also be used to track changes

to the baseline of function points through time. The program could be elevated from the status of a small

prootype to an operational sizing and estimating tool using Fro*Ada, -n Oracle product that provids

database binding to an Ada program (22:50-51). Pro*Ada would allow direct acces to the datiaue from

the data collectoio progrun. Another consideration is to revisit the possibility of using SQL*Reports as the

data collection software. The data dictionwy report program already acesaas the Oracle components. The

most convenient spect of using the data dictioinwy to coasnt function points is that the Oracle components

that are mapped to the aunction points have names. These names could be viewed as the software bineline,

which means that the entire baseline could be viewed in germs of named function points a in Appendix

F on page 75.

Currently SCV does not make use of the more advuaced copkbllity of SQL*Frmw version 3.0 to

52

imbed procedurs into the forms. Should that capability be tpped, the current method of counting function

points would likely lose some of the power to explain variation from the effort and schedule mean response

to a given level of function points. One possibility would be to include an Algorithmic peanmew lo the

dthe defined by Symons, in the same manner that Jones added a sixth parameter to Albmtu's original

five pmmaeters. A fourth parameter added to Mark II function points to measure algorithmic complexity

would create a method sufficiently different that it would waraut the designation Mark M.

Since this study was based on relational database software support with a 4GL, it was very easy to

adapt Mark 11 function points to the software support. With a 3GL like COBOL it is not so convenent and

would probably entail the accrunulation of a lot of rules like Dregr's and Jones', unless the development

methodology was focused on inputs, outputs, and entities. Tbis would be easier if a technique known as

Hierarchical Input Process Output (HIPO) design was prevalent in the organization, from design, tlhrugh

configumtio management, to documentation. Instead of programmers arbitrwily creating module in -

ad hoc manner, but rather designed, documented, and managed the modules as a configuration of Mark I

function points, a 3GL project might be as easy to size as the projects in this study. If an orgmization

had both a 3GL and SQL"Forms 3.0, the Mark 11 function points counting rules they establish for the

3GL could also be applied to any imbedded procedures in SQL*Forms. Any of these suggested changes

should be evaluated for their usefulness, and a possibility is using Boehm's 10 fiteria for evaluating a

software cost model: definition, fidelity, objectivity, cou veness, detail, stability, scope, ease of use,

prospectiveness, and parsimony (6:476).

VI3.2 Estinating

Tbe single predictor was cmated by using Symons' Indwry Average Set of weights. Ths limits

the potential explanatory power in multiple predictors tbulating the number of addition, changes, and

deletions of function point. As a cue in point, the two influenial observation a 32 and 50 function

points appear to indicate a negative relationhip with effat when plotted alone as in Figure 9 When the

53

Fipre 9. Inluentlal Points

other observations are added along with th regresso line as in Figure 10,1i shows that die observations

we valid although a couple of standard deviations out from ie regmession lne at ther levels. Upon closer

examination, the observation at 32 function points just happens to be entirely changes, uad the one at 50

function points is entirely additions. The is potential for gaining additional eamplbosy power from the

observations by performing a multiple regression based on three fcion: additions, changes, and deleions

of function points.

Rigre 10. AR Obser'atlms

Another oe laIkng data is th response of ins of hoe, four, or mre peopie. As tam mmbers

increase ulthmeannlly, the lines of comm ication among them incrme geomntrically. k would be

34

intreting investigate Pumam's assertion that the poblem solving response of groups of four or more

people me essentially the same (24:216).

Currienly computer resource usage by individual is unknown because the accounting informatio

is not activated, and beca users and programmers log on with a single group identification account. If

accouin information were available by team and project, it could be used to derive dae and mes to

free programmers from schedule data collection.

Humphrey outlined a method of using time series to compensate for a programmer's leandng curve

and detect when the software development process has reached a stable state (17:203). A problem with

his method is that It is based on LOCs and invites its paradoxical effects on softwar economics. If

Humphrey's method were based on a ruer measure of software such as function points, the process could

be brought under statistical control with a truer sense of continual improvement.

Another benefit of using function points is to study the effect of training. Several months of team

observations could be collected, then the training, followed by another run of observations. If the utaining

was effective it might show up as increased efficicacy in supporting software requests.

The schedule response is less significantly rmlated to function points than the effort response. This

is not swrising since by definition work-hours ar only the hours spent working on a particular project,

while calendar weeks accumulate for as long as the progrunmer work, on the project, including whatever

i delay the projecL So, a team's schedule response is likely to be dependent upon other fators

in addition to funtion points. One possibility is defining a factor dat reliably characterizes a work order's

true priority to the oranization. Said in another way, to explain additional variation, defin a actor that

measures the likelihood of a project being preempled in favor of emerpent demands upon the organization.

Bob Elsing cremated an elaborate set of metrics based an the interrupdons that retard programmers'

productivity (13:164).

Ther is also a commerial software sizing and estimating product called Before You Leap (BYL)

that uses Mark H function points (33:177). It was not available for this resarch. It may be worth looking

into for adaptation to SCV's environment, sm it is now lear that there is a significant relationship

between Mark II function points and effort and schedule, for the SCV envirtmnent Another posbity is

to create a databe at APIT for collecting size, effort, and schedule measurements from many Orale sites

throughout the Air Force. The inclusion of many sites as a study so follow this research would defittly

require that he environmental factons be added Io the values colectd The benefit would be to crea a

55

software support measurement and estimating system tailored not only to Oracle sysenms, but ao Air Force

applicatio and procedures as well.

VIA SowMa Quality

MIay textbooks vainly aempt to define software quality, but there =c two books on quality

worth adapting to software Robert Pirsig's classic analysis of quality (23:100) and Dr Deming's idea

of operatiomal definitions (11:276-296). Both emphasize a thoughtful approach so quaity boed an a

prei mderstanding of functionality. Funcion points can provide a meaningful measure of functiou-bused

software quality, that can not only provide a means of sizing and estimating software support required, but

can also take advantage of scientific methods of anagement that have been perfected in other discipline.

In miCTo-economics for instanc, a firm can minimize its losses by operating at a level where

manrginal cost is equal to marginal revenue (14:259). This is also related to the concept of compemeay

slackness in management science, and Barry Boehm described a similar method called marginal analysis

(6:209-210). In this research, effort and schedule regression lines were developed, and each line has a

slope, which is the marginal cost of supporting function points. The maginal cost in hours or weeks can be

convened into dollars. The problem is deriving marginal revenue in a government (or nonprofit) opeaion.

Revenues can be realized with a recent innovadtio in the DoD called Defense Business Operating

Fund, (DBOF). It is a attempt to amble govemment organizatim to market their products within the

government, and actually receive revenue. In fact, one software orguiization at Gunter AFB, AL is

developing software and iarkting it within the DoD (9:1). With this measure of revenue, it is possible to

derive nmrginml revenue for function points, allowing the organization to minimize its losses by operating

at a level of function points where marginal cost is equal to marginal revenue.

Even without the private sector's conveient common denominator in the dollar, there am ways to

achieve continual improvement of software quality based an Auction points. A smple exmnple might be

the number of LOCs per funcdon point. A measure of quality might be the fewer LOCs per fucto point

the be, er. This of course may eoorage poor programming practices dot leads to emr-prone software. A

more sophisticated definition of how to deliver software functions should be basal on a precise specication

of a programming style guide, as well as a means for scoring the compliance with die style guide.

With the additional information acquired by measuring software functionality in terms of function

56

points, numuger can achieve Sgater conl of the softwvre sipwt process through seae knowledge

of the conditioed respons of the p•oces. As many authuos have noed, we cannot nmage what we

cannot measure!

57

Apeudi A. Obmrvwatmu

* A.B: individual enlisted progrnmuer

* C:. Inividua cnubactor

* I> um of two enlisted progrunmers (A mad B)

Table 9

Summary of Team ObmrAtlams

Teams Government COmWu~S= Obmrvadn

I PICaNer 6 3 9

2 Programmers 3 0 3

Observation 9 3 12 Tota

The 5us System

08 nSCODE nSTST WKSMoD3 wKESTT WV TUSK X RU3 MM Z

1 4.8 1.0 1.5 1.5 3.58 A 0 5.8 3.0 0.00
2 8.2 3.0 0.6 0.4 9.80 A 0 11.2 1.0 0.00
3 81.0 22.0 2.0 1.0 50.62 a 0 103.0 3.0 0.00
4 4.0 0.9 0.4 0.2 5.24 a 0 4.9 0.6 0.00
5 4.3 0.1 0.1 0.1 3.58 a 0 4.4 0.2 0.00
6 15.8 2.0 0.8 0.2 1.92 a 0 17.8 1.0 0.00
7 4.0 0.5 0.1 0.1 5.24 D 1 4.5 0.2 5.24
8 9.2 2.1 0.4 0.2 3.58 D 1 11.3 0.6 3.58
9 94.0 31.0 2.5 1.5 32.36 D 1 125.0 4.0 32.36

* 10 0.2 0.9 1.5 0.5 1.16 C 0 1.1 2.0 0.00
* 11 1.5 2.1 2.8 0.2 1.74 C 0 3.6 3.0 0.00
* 12 2.1 14.9 2.1 1.9 4.64 C 0 17.0 4.0 0.00

* These observatioas were used to develop the effort model, but
were deleted for the data set used to develop the sahedule model.

58

A.1 Frequency Plots

*Cm. Con.
Midpoint Vz"q rzq Percent Peroent

10 I*A*A*B*B*B*C*C*C*D*D 10 10 83.33 83.33

30 I*D 1 11 8.33 91.67

50 *k 1 12 8.33 100.00
---- +----F----F--------+

2 4 6 8 10

Frequency

URS Cm. Cm.
Midpoint raq Vr*q Percent Percent

25 I*&*A*B*B*B*C*C*C*D*D 10 10 33.33 83.33

75 0 10 0.00 83.33

125 I*A*D 2 12 16.67 100.00
----. ----.-------- f---l--

2 4 6 8 10

Frequency

WNsax CUM. Ca.
Midpoint IrFaq Irzq Pecemt Percent

0.S I****&****3*********3****D****D 6 6 50.00 50.00

2.25 I****C 1 7 8.33 58.33

3.75 l****A****A****C****C****D . 12 41.67 100.00
--.. --------------------------- +

1 2 3 4 5 6

rzequencW

59

A.2 Effort Scatler Plot

Plot of 3OUR 'JV. Symbol is value of =fA.

140 +

I D
120 +

I C

100 +

so +

60 +

40 +

20 +
a C

D A

0 + C

--- 4----------4----------4----------4----------4----------4----------4---
0 10 20 30 40 50 s0

30T•: 2 obh hidden.

60

A.3 Slehde ScaMer Plot

Plot of 1US P. Symbol is vLalue of MMW.

4.2 +
SI D
I

3.8 +

3.4 +

3.0+ + a

2.6 +

2.2 +

1.8 +

1.4 +

1.0+ + A

0.6 + DR

0.2 + DD
I

-----------.-------.--------4-------.--------4-----------------
0 10 20 30 40 50 60

61

Appendix B. Effort Model

B.1 ANOVA and Parameter Euinates

Model: K
Dependent Variable: ROM3

Analysis of Varian"e

SuMR of mean
8ue D Square.m Sqare Value Pzrob•

Model 3 18754.23281 6251.41094 108.136 0.0001
zrror 8 462.48719 57.81090
C Total 11 19216.72000

Root MS 7.60335 R-sapare 0.9759
Dep mean 25.80000 Adj R-sq 0.9669
C.V. 29.47034

Parameter Natimtes

Parameter Standard T for HO:
variable Dr Uatitaate Zrror Paramez-0 Prob > ITI

XITIDZRP 1 0.538052 2.97537603 0.181 0.8610
U? 1 1.992678 0.17049057 11.688 0.0001
x 1 -10.814188 6.99881712 -1.545 0.1609
lUF 1 2.175083 0.37386872 5.818 0.0004

62

3.2 Modd Spodkadsm

Plot of !3381D*TWa!. Symbol e value of TEM.

*1 +

R. I
10+

L
d

c 5a

-5 +

3. SX I"da M M
'CAit zqF~qPzet eon

-75I*****D*D3 3 30 30

-4------4------.4----------------------------
0 ~ ~ 20 30 604 0 24

Preq edicte au o O

TEUSI Dini~al c. 63

33 hemUd Owdters anmd Clalar•iy

OBS JL!T 3W WIXTS

1 0.12667 -0.24750 -0.0943
2 0.11133 -1.28667 -0.4554
3 0.97612 1.44470 9.2372
4 0.11877 -0.83556 -0.3067
5 0.12667 -0.43655 -0.1663
6 0.13734 2.40519 0.9597
7 0.47126 -1.33939 -1.2645
8 0.53050 1.33939 1.4237
9 0.99824 1.33939 31.9071

10 0.14315 -0.23343 -0.0954
11 0.13866 -0.05374 -0.0216
12 0.12130 1.01425 0.3768

Vaziable DY Tolerance

INT3RC1 1I

VFl 1 0.77740809
x 1 0.52453916
ZUVP 1 0.43714123

Colliaeazity Diagnostics(inteazoept adjusted)

Condition Var Prop Var Prop Var Prop
Number Eigenvalue Numbeir W I x UP

1 1.85961 1.00000 0.0775 0.1002 0.1080
2 0.87743 1.45581 0.6358 0.1654 0.0029
3 0.26296 2.65931 0.2867 0.7344 0.8891

64

BA Prtiictim Intrvals

Thl 10 shows the predicd respone upperpa, md lower bond of the 80 perce predictiUn imerval.

The actual work-hours for each observadon is in boldfate relaive to the picied values amd doe bounds.

Table 10

80 BPeent Predletio Intervah far ffort Model

OBS Lower Predicted Upper

Actul AAc

1 -3.4733 5.8 7.6718 18.8170

2 9.0102 11.2 20.0663 31.1224

3 87.4914 101.4074 103 115.3234

4 -0.1268 4.9 10.9797 22.0662

5 -3.4733 4.4 7.6718 18.8170

6 -6.8305 4.364 15.5585 17.8

7 0A565 4.5 11.5629 22.6694

8 -6.5007 4.6444 113 15.7896

9 113.4267 125 125.4262 137.4259

10 -83710 1.1 2.8496 14.0701

11 -7.1951 3.6 4.0053 15.2058

12 -1.3351 9.7841 17 20.9033

Plot of PndieW vs. Amul Effort
IN

'i

Amml

Figure 11. Effort Model Predicted vs Actuals

65

Appnfx C. Shedubl Modd 0w

C.1 ANOVA snd Puamele Euthes

Model: W

Dependent Variable: IX=

Analysis of VarLance

a•m of mean
Souroe DF Square Square V Value Pvob>'

Model 3 11.20229 3.73410 3.700 0.0965
zrror 5 5.04660 1.00932

C Total 8 16.24889

Root USX 1.00465 R-square 0.6694
Dep Mean 1.51111 Adj R-sq 0.5031
C.V. 66.48415

Paramoetr Utimates

paramster Standard T for 30:
Variable DV Estimate Error ParOtzin Prob> 1 I1

IXTE3 P 1 0.987992 0.50596367 1.953 0.1003
WVF 1 0.038427 0.02378450 1.616 0.1671
1 1 -1.142614 0.97807916 -1.168 0.2954
zXuJr 1 0.089399 0.04998601 1.788 0.1337

66

C.2 Model SpeH~dlem

Plot of TI3,ZD*TiZ. Symbol is value of IUIM.

2+

* 1+

d
4 D

1 0 . -- 3 -- -- A --- D

D A

-1 + B
I

------------------------------.--------------.--------------
0 1 2 3 4

Pzedicted Value of NEWI

YMBID Residual Cm. €m.
Midpoint rzeq Vmq lezmt Pemt

-1.2 ****a 1 1 11.11 11.11

-0.4 ****A****Z****D****D 4 5 44.44 55.56

0.4 ****&****B****D 3 8 33.33 88.89

1.2 0 8 0.00 88.89

2.0 ****, 1 9 11.11 100.00
-----. ----- F----------+

1 2 3 4

rzequmnc

67

CJ .IdmtU Outller and Cdlmearky

an ELT U!UD D'I!T8

1 0.21083 5.47349 2.82908
2 0.17062 -0.36220 -0.16428
3 0.98297 0.46822 3.55722
4 0.19586 -0.61188 -0.30197
5 0.21083 -1.04699 -0.54116
6 0.22889 -0.06266 -0.03414
7 0.47126 -0.39329 -0.37130
8 0.53050 0.39329 0.41806
9 0.99824 0.39329 9.36903

Variable DF Tolerance

S1ZMT 1
UVP 1 0.77251197
I 1 0.52753464
lull 1 0.44932603

Collieazity Diagnowatic (Intezoopt adjuated)

Condi•ios2 Var PZop VaZ PZop var Prop
N=eor Zigenvalue Nmber MP I zull

1 1.77089 1.00000 0.0630 0.1093 0.1240
2 0.96712 1.35318 0.5892 0.1428 0.0003
3 0.26199 2.59989 0.3478 0.7480 0.8757

68

CA Prediction Inte•ls

Table 11 shows ft pedcwd response, upper, mad lower bound of the 80 petent pmdctim interval.

The actual calendar-weeks for each observaion is shown in boldface reative to the pvdicid valum and

die bounds.

Tabk 11

80 Percent Pmdctim Intervals for Scmdule Model One

OBS Lower PrediatN Upper
Actual Actual Actual

1 -0.3786 1.1256 2.6297 3.0

2 -0.1176 1.0 1.3646 2.8467

3 1.0883 2.9332 3.0 4.7780

4 -0.3068 0.6 1.1893 2.6855

5 -0.3786 0.2 1.1256 2.6297

6 -0.4519 1.0 1.0618 2.5754

7 -0.9810 0.2 0.5152 2.0113

8 -1.2011 0.3030 0.6 1.8071

9 2.3968 3.9818 4.0 5.5669

Plot of Prdkd vs Acmml Sdcedule (1)
4,I +

1.7

Figure 12. Schedule Modl Two Predicted vs. Actual Schedule

69

Appemdh D. Schedule Model Two

D.1 ANOVA and Parameter Estmates

Analysis of Variance

SuB of men

Source Dr Squares Squaze P Value Probr

Model 2 9.82482 4.91241 4.588 0.0618

Zrror 6 6.42407 1.07068
C Total 8 16.24889

Root USE 1.03474 R-square 0.6046
Dep Mean 1.51111 Adj a-sq 0.4729
C.V. 68.47514

Paramater rEtimates

Parameter Standard T for N0:
Variable Dr Esthuate Eirror ParNwtezn0 Prob > |71

DhTECP 1 0.6a2226 0.44597194 1.530 0.1770
V" 1 0.046844 0.02334585 2.007 0.0916

IuFP 1 0.049292 0.03741901 1.317 0.2358

70

DI Model Specicamfloim

Plot of 1"SXD*Y3&T. Symbol is valu of !TJa.

3+

4I

I A

2+

Rad I
0 I
S I
± I
d 1+

U I
a I

S I D

IA
I 3

I DI 3

-1+ D
44t---------------------------------------4---------4---------4-

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Predicted Value of 13KB

I381D Residual Can. CO.
Midpoint rzeq Vrzq Peoet Percent

-1.2 1****D 1 1 11.11 11.11

-0.4 ****************3****D 5 6 55.S6 66.67

0.4 I****B****D 2 8 22.22 88.89

1.2 0 a 0.00 83.59

2.0 I****A 1 9 11.11 100.00
-----.----.--------------

1 2 3 4 5

Vzeqiaency

71

D3 Inuemtudl Outers and CoMemarity

0w8 3&T RSTUD WITS

1 0.21083 5.47349 2.82908
2 0.17062 -0.36220 -0.16428
3 0.98297 0.46822 3.55722
4 0.19586 -0.61188 -0.30197
5 0.21083 -1.04699 -0.54116
6 0.22889 -0.06266 -0.03414
7 0.47126 -0.39329 -0.37130
8 0.53050 0.39329 0.41806
9 0.99824 0.39329 9.36903

Variable Dr Tole~anoe

SZ1M 1
UN? 1 0.85055734
lUrF 1 0.85055734

Collinearity Diagnostics (intercept adjusted)

Condition Var Prop Var Prop
Number Kigenvalue number Wi lUFI

1 1.38658 1.00000 0.3067 0.3067
2 0.61342 1.50346 0.6933 0.6933

72

DA Prediction Intervals

"[able 12 shows the predicted response, uper, and lower bound of the 80 percent pxedicm interval.

The actual calendar-weeks for each observation is shown in boldface relative to the predicted values and

the bounds.

Tabkl 12

80 Percent Prediction Intervals for Schedule Model Two

OBS Lower Predicted Upper
Actual Actual Actual

1 -0.6542 0.8499 2.3541 3.0

2 -0.3408 1.0 1.1413 2.6234

3 12086 3.0 3.0535 4.8983

4 -0-5685 0.6 0.9277 2A238

5 -0.6542 0.2 0.8499 2.3541

6 -0.7415 0.7722 1.0 2.2858

7 -0.3102 0.2 1.1860 2.6821

8 -0.4777 0.6 1.0264 2.5305

9 2M082 3.7932 4.0 5.3782

Plot of PredicWd vs Actual Sdhedule (2)

!+

ats

'aod

0.1 U• I? £5 U 4,1

FIgure 13. Schedule Model Two Predicted vs Actual

73

Appendi E. FGREP

El FP2.RE

Te lext fle FP2JtE contains the key strins for the fil-oiend regufar expression paser, FRE,

to search for in a data dictionary rqxpt produced by an Oracle program formndocipt OREP is invoked by

the Digital Equipment Corp. Command Languap file REDUCE.COM in the next sewuL The contents

of FP2.RE me as follows:

TXIT,:
WnIP:

STEP -
FIRM
block

E.2 REDUCE.COM

The following DCL file prompts the anlyst for informao about a particular SER ad Invokes

POREP to searc'h for Oracle SQL*Forms components that we mapped to Mark H functio points as defined

in Chapter Three, by the propsrn listed in Appendix H on pap 100.

$ rileround - ""
$ lORM - "n"
$ -n - "n"
$ LOOM2:
$ inqire P2 "What is the MW (1 to 5 digits) a->
$ LOOPI:
* incqire pl "Enter file mani of .LX8 file, withot .Lx part t>
* define sys$output ' 11t.•2
$ fgrep -f tp2.re '?1'.li£
$ deassign as$output
Szren 'P11'.Is 'PI'.'P2'

$ dir/size/date 'el'*
$ inquire P0PM "Do you have another tile ? (y/n) "

i if l=O .eq. "T" then goto 1O001
$ Inquire SER "Do you have another s3 ? (y/n) "
it i53 .eq. "y" then goto 1•002

* Done:

74

Appeadix F. SQL*Foms Inputs, Hinted, Outputs

Tbe folowing listing Is the result of REDUCE.COM scuimng a data dicdouary report and k

represents the portion of the SCV baseline from a SQLI.,oo (Mink 11 Transaction) called Adm_._ssimu

Within the lsting we the names of the function points. For intmace twoards the end of the listing,

one purticnv tigger stop (Mrk U input) cmi be uniquely distiguished frm all the others i the ante

baseline by compledy specifying its form, block, field, mid tn ADMISSION, PERSON, SSAN,

KEY-PRV.L•, STEP 1.

TITLE: ADMISSION
TYPE: CHECKMANNINGCODETRG

STEP - 1
TYPE: CLEARDETAILSTRG

STEP - 1
TYPE: KEY-CLRBLK

STEP - 1
TYPE: KEY-CREREC

STEP - 1
TYPE: KEY-DELREC

STEP - 1
TYPE: KEY-DOWN

STEP - 1
TYPE: KEY-NXTREC

STEP - 1
TYPE: KEY-NXTSET

STEP - 1
TYPE: KEY-PRVREC

STEP - 1
TYPE: KEY-SCRDOWN

STEP - 1
TYPE: KEY-SCRUP

STEP - 1
TYPE: KEY-UP

STEP - 1
TYPE: PERSON TRG

STEP - 1
STEP - 2
STEP - 3

TYPE: PRE-INSERT
STEP - 1

TYPE: RESIDENTTRG
STEP - 1
STEP - 2
Block 1 : PERSON

TYPE: KEY-CLRREC
STEP - 1

TYPE: KEY-ENTQRY
STEP - 1

TYPE: KEY-EXEQRY
STEP - 1
FIELD 1 : SSAN
FIELD LENGTH: 11
TYPE: KEY-PRVFLD

STEP - 1

75

Appe~dh G. Data Dkcdomar Prqraa

.RZ- This £VIT/SCV MPT application provides hardeopy docuienatation
* Rý for specific 8QL* 10336 applications using the oracle dictionary.

SZU3 updated 10/90 US

* Ru "'Declare IAPAP? table related variables **

* 336****APPLXICATICEf LEVEL XIWOUB!IOE V3IA2LES
.DSCLAR3 ARPID 99999 .333 AIPLXCL!IE XD NWER
* DECLARE APPOlIUR £30 -M APPLICLTICE olýlR 8 ORACLE mSRm
* DECLARE APPNIU £30 -SHORT IPPLICLTIOK -
* DECLARE AIPTITLE ASO TITLE uZD FRc HAME IUP 1U
* DECLARE TODAY £L9 -DATE Or REPORT GME3&TXOE

* 3 ****Declare ZAPULK table related variables **

* mu ***BLOCK LEVZL XNWODJSTXOK VIRIARLES
.DECLARE BWUI68 £L30 . UZBLOCK i
.DECLARE 3L=ESC A60 .RZK MiS LINE DRSCRXPTICE FOR THIS BLOCK
* DECLARE DLIKSEQ 999 ZMu SEQUICX uWIMu OW BLOCK In £151
* DECLARE 3LzWUQKE &3 RZK Y - CHECK UNIQUDISS OF P313W KEY
* DECLaRE ULKTNAI £61 muiý OF BUZE TAMLE. NULL-CMTRL BLCK
* DECLARE TDESCRPT £60 S ASE TAULIB DESCMIPTIOE
* DECLA1RE UWIORXC 99 RZK Nuw OF ROIWS TO DISPL&Y
* DECLARE BLUIOBUV 999 mu NWER OF ROllS TO DUllER
* DECLARE ULULILW 99 XU MaxE LII
* DXCLARE BXjZiR 99 RR UE CU' O LINE3 PER LOGICAL RECORD

.m ***** Declare all IAPCOST table related variables
* mU Primiary Key values need not be declared again.

* DECLARE OffTETM £80 * m COMMT LINE OFr THE!
* DECLARE DOILPIATE A80 mu BOXIPaTE MR

*Rut*** Declare all UIAPW table related variables
* mu "*" VIE LEVEL VARIABLES
*DOELARS VLUB3 £30 RMu VIEW
* DuCLARZ VWSEQ 99 -RM SQUoZCZ u N or FUL vw BLmOCK
* DUCLAR FLOTYPZ £7 mZU VIEW DA!TLTYM
* DSCLARE VWIL 999 RZU VIEW LENGTH
.DUczaRE VWQfIM 999 * Z19T

*DMCIARE VWDTAM £L3 .36T aDAMARUES VIEW
SDMCARE IWUNT £3 muZ Y - VIEWD PART oF PRIMARY
* DECLARE VWWCK £61 mRU VIEWZ I FROM MICK TO COST UT
. DUCL AM LVWCVLT £80 . mu D'£ULT vaxmR
*DUCLARE nW~I8P £L3 RSK T - DI8PLAXID FULW
* DECLARE VWDP£ 099 . u rwwamj Pamn uum

76

* DECzARE VwLII 099 - CVLnm] LXMi muwm
* DECLAR VWIPROMPT £50 .33 VIE PROM"
.DECZaR3 VWUJNTMR 3 .31 - ZTEAEL VIEW
* DECzaR VWQUERT M3 .31 - QOZMLE FIELW

.DECLARE VWUPDATE A3 * - VPD~AZMA VMW

.DECLAR3 VWDUPDUUL A3 .UT - U1DLTAWA5Z Ir MULL VIEW
* DELARE VWUM £3 .32m T - MIM3ATOW VIEW

.DMCZAEZ VWVIXZ £3 - T - VVM LUIER VIEW
SDMCLARE ILUSEIP A3 .3m T - SWP TO 331! VIEZ)WM - lLL
.DXCZAM ILDEIDR A3 AM T - 310305M01 CI V£LUES TO 50533
.DECLA3E FLATW £3 .RU T - AUT DIS3PZAr RKIR CE VIEW RETIM
SDECLARE LWUPPER £3 .ý - - COMVM TO UISE CIUE

. DUCZAR 1WZ ag0 .X MR Cor TE LIST-OF-VALUS COWWN
SDMCLARE VWLCE £30 .31LOWl VALE
.03ECLRE IWNIX £30 . U IGn VALUE
SDECLARE VWEELPF AS0 M IW aRZi MBSUGE
SDECZLARE VLODES05PT £60 AM3 VIEWD DBSC3IPTXOE

*33 ****Declare IAPT3IG=E related variables
331 ~TRIGGER VARIABLES

*S ELAME TRIOTYPE £30 .31T"l air T3IGG3, ULmR
* DECLAR T3IGGESC £20 .31TRIGGE DES05IPTIOE FM =r DISPLAY
* DECLARE TRIOKIDE £3 AM3 T - DX511hZ TRIGGER II grE DISPLA

.331 DOW* D lare XAPTMG (Trigger stop) relatebd variables

.33PM ** TRIG=E VARIABLES
.DECLARE T3GSE 9999 .31TRIGGE BMWP NWum
.DECLARE TEGLAREL £30 . USTATDT LasEL
.DEciaRE TROCURSB £1 T - 194MNTAXM A SEAPARTE CSUf
* DECLARE TRGVE Al s331 T - ADCM TRIGGE IV STE VA=L
.DECLAR TRGIT 1V .3l MM - REVERSE REmm CODE
.DEcLa=E TRORIOLL Al AM3 Y - RETURN V£ILWZ W £OSTING TRIxG
-DECLMRE TRGLAB £30 .1SuCems LasE=
.DECLA3E MOMS £L30 .31 AXIL MLAX
.DECLARE TR0ISG £80 MEUSSAG DELIVZX ON VAILUR

RU ~ Declare XAPSQLTZT related variables **

RU ** SO5L T=I VaRIamLE
SDMCLaRE SQTNO 999 . R TRIGGER ý ASESIGNED1 VK ALL LEVELS
.DECLARE SQTTT £80 MNR TMi 10m ALL TRIGSM

RU ****Declare IAHPA table related variables g *

RU 'i'm" 505 VAR.ISELE
. Dacia=E MIM1 999 - MM 3011L1!ER ?G MUMER
* DECLARE RILM 999 M 30I1La!E LMWMX

44 Doczam MANTME £80 .= RU 31jwA!E TWIT
* DECLARE PAGECHT 999 -M COUTM F VS3OIIýLATE LOGIC
" SET 105TK 0
"* DECLARE LINSCHT 999 M R COUTERF MOR311Lmpa! LOGC
" DECLAR am IVL&G Al I U T, an DOILERIATE DISWZLAX

77

.83!T m"lalr 'I"

.RIK ***** Other variable declaration *****
.DuadlaI 3WO JL30 .3= WM Or TOM TO DOCC0ENT (OR ALL)

.RAW ***** TAXIS DW/W1ZTXGC8

.U3M Main Table - Worn Level
IDT1 5701

.R= Main Table - Block Level
IDT 2 10 70 #

.PAK Main Table - Block Level
#DT 3 12 75 #

.R= Main Table - Field Level
#DT 4 15 80 #

. Bl Main Table - Field level
#DT 5 17 90 #

.3= Attributes Table, Worn Level
#DT 6 17 32 33 44 4560 61 80 #

.3W Attributes torn Level
#DT 7 14 14 15 80 #

.R3W Fail message Wror Level
#DT 8 15 28 29 80 #

.3lW Trigger 8tep Message Table Block Level
#DT9 1701

.PAK Trigger Stop Attributes Table block Lwvel
#DT 10 19 19 20 80 #

.R3 Fail Massage Block Level
#DT 11 19 32 33 80 #

.m Trigger Step Message ield Level
#DT 12 190 0

.3= Trigger step Message Wield Level
#DT 13 21 0o

.UM Trigger Step Attributes Table, Field level
#DT 14 21 21 22 80 #

.M Wail Massage Wield level
#DT 15 21 34 35 80 #

78

. Sazeen Display Table
Of! 16 1 80
#DT 17 17 32 33680#

* 3g *** ILUC! 3U13 DUWINTZOCS

* *******Define the ALPLCh!ION level ZePeZt Select aMIze
.DVE h1153L

SWINO! LIPID,
* ArnzXTM,

TO CZAR (STIDATE)
meT AMPD,

LaVPPER (AulmiE) =PU"X (M1P)O

* 33~ ~Define SELET macro for APPLZCiITOK leoel Cern~tS
.DEVI LIPPCffg=l

SELUOT OffTEM

130K SYSTEL IAIC T
3 OfLPID - LIPPID

Am OULK~w is NULL

******Define the SELET mazro for ULO0 level eOCIMM

SELECT Wff T
INTO OffTETZ
rimK SSTML zAICXOT
UI3 OffIWPID - £LIPID

MID Om~ffWISUL

im Clff= LINE

.D iN VWOSELM x M

RMe orCI%=u

- OLIPID - SSIPID
Am OinI - M33
AM oNWW - aiMm
MID O!rf~lP 1S HUL
LaW OfIMM > 1.

79

RUE ~DefiUM the SELECT macro for VIEW level boiletplates

SELECT Off T=
INTo 30! LVL&TU
rm USTU. 1110WM

- OffAPZD - &AmIXD
AN lf£ - BX
Am OffVw - IFLDhD
am MffTA! IS MULL

-a OffLIR - I
ODUZ by Off L

RUE ~SELEICT macro for iPPLXCLTZOM level TRIGGER ccints
* DEPIR hPPTRIGCffSZL

SELECT Off TE
INTO OffTI
VRM SYITN. IAPCOOSIIT

WHER OffAPXD - LAPPID
£NU OffZ IS N30L
MND OfSTRGTTP - £TRIGMBP
um OffTMSEQ - 0

AM f VwrL is NUZLL
CMDE Br OCln

* g**** SLECT macco for DWCK level TRUG= cma~t

SELECT OffTHE!
xiNT Off T
FRAN SYSTUE. IPCOMMT

urn.OffPPID - 6APPID
AN CHMUZ - &LULIDZa
Am OffvLD is NLL
AMD Off TRTT - TRIOTIP
AND Off ~otS3Q 0

Ora mr OffDl

.3W ***** SELBCT macro for VIEW level TRIGM cciits

.DWIn VWTRIOffSEL
SELECT Cf HIT=
INTO OffTTm
vimK STST. ADPCWT

- OffAPPID - MIPPID
AMD OUMLIK - aLma
AM COWW M IW
AmD Off!T!AP & TxIGTTP
Am O~fftRGSEQ 0

so

.22K ***** Generic 3UXZC! Sacco for TRZOGE STEP commnts

suxacr Off TE

-OMZ OffAPPXD m PMID
*Am olavasm - 8!30T?

AND OfUSMXZ I NLL
ASI OWffLD IS NmLL

CODE By aaw.n

*22 ****&* Generic SELECT macro for MRGM STEP commumts
.DMUM STRGOESZL

V3CK STTI=. IAPOOE!B
13333 OffAPID - &APPXD

AmD NVL MOMU3 II) - 83L1MU
AND OffTGTTP - £!RIGMTP
AND oaTTRug - a~SuRGS
AmD OffVD Xg MULL

* MZ ***** Generic SELECT =ac4o for T3IGM V=3 CC=MtB
DEPnIW TRG=M EE

Vram SS!. IAPODNMmT
mWmZO aSMPX - SAIPID

AND NYL (CUT=ZJ," -SLfhMN

AND NYL (Chff1ID," - aiaIWZ
AND 0E!Tm7AY - &TRIGMTP
Am 0ff!RMSE - RO

AMfl ***** Define Ube SELECT macro for hIILZCSTICE level trig

Bal=VL(TEIWMf,"

NvL=(T=EKmSC, 'NOW),o'

81

TRIODEEC,
TRIGB=D

FROM SYSTU. ZAPT3IGRM
U3ER T3IG&PPZD - AWPPID

Am TZIL= IS NUXLL
arm=R By T3IGTTPE

.331****Define the SELECT inro for S3W= level triggers

SELECT NVL (!ZXGVW,",
TRIGT!13,
UVL (!RXODESC, 'I01Z)I
DECODE(TURIOID, 'Y' ,'ES', 'NO')

TRXINTBIPE
TEZODE8C,

FROM SYSTUI. IAPT3IGUR
WHERE !RIGIIPPD - LAPPID

-II TRXGB= - &3LXa
AND TR3GTL X3 NULL

CEDER Ur TRIOTYPE

.331 ***** Define the SELECT maro for FVIEW level triggers

.DMrI FWTRIGSEL
SERICT TRIGTIp3l

NVL(TRIOPDES, '301),
DECODE (TRIOKID, 'Y'I,YESU , I NO')

INTO T3IGM!1,
TRXODEEC,

FROM SYSTUI. I3PTRIGGM
MOER TRXGAPPID - W~PID

AND TRICEL - &SLUG
AM TRXGU'W - MOLMMN

CEDER 3? TRIOTIP

AM***** Define the generic SELECT miscro for trigger at"p
.DWIR STEPSL

TRAL,

DECOD (TRGC3S,'Y','**,#1),
DECODE (TRGXW, 'T' , ','')

DECODE(TRGROLL, P Y' , '

92

!DGLUM,
SQ!MO

"man,

FROM SUT33I.AP!W

MID !113Z - £TRiGt!13
-w NYL (T3=a, ")=-aLzi

*******Define the FORK level zepor~t selecft uRCr@0

SRLBCT MRG8Q,
TRWAWL,
TRGRL,

D3CMD(TMCU8, I',' ,D*I, 1),

DUCOD3 (TROLL, TO ,II I I)

Mmam

TRMAUS,
Twa9w,

WMa,

TR~OLL,

UNKR TROIPPID - &1MIXD
AiM TRGMlP - ITRISTMP
AND TRInxz X3 NULL
Aim TAWL IS NULL

oMDR s? &TMS3

SDef ine the FIRMD level ceport tziggez select macso
.Darn IWSBTZSZL

BRLaT TRGMZQ

83

URGSQL,
DECOD (TROCURS, I V, i I I I I)I

DEjCOD(TZNVI 'T' ,I*# "),

DECCDS(TaROLL, IT'," ' ','*

!EGSLI3,

T3ROLAL,

TRGCUR3,

ANU!G?3 SRIGTP
- NYLA(RL," nDU
- Y TRG WWA,")VW

.DEI1N3 TRG!ZSZL

IRON SYTIT. IAPSQTXT
WHERE STRAIPPD - &APIID

AND SQIIIO - &STRXIO P

ONDER BY TQTLII

.RMu **'*** Define the geCn leer SLZC re zort o tregeer mac o (LLUOC
.DEInW 3LKBETL

SELECT 3LTM,
NvLmlrOc D1),f

DZFXMX LKSEQ

DElCODE (ULKUNQERY~, I', ITIE8', 'IMP),
DECOON (ULEMEU, NULL, I Cl0VTL ULOCK',

DECODE (BLETOUNER, NULL, NULL, 3LRTI 'R

I I XLKt

wims13),

NYL (3LWCETQL, 0)
maT mmwuM,

5LKUESC,

84

Dl'-! I

-CE19,

umOLUIPPXD - &AIPID

* *****Define the SU=~ level ZePOzt seleCt insCM (ClU ULOCK)

SELECT wmum,
NVL(NMZBEC, 'NONE'),
3LKBEQ,
DECODE (ULKWIQKET, '7', 'YEI I 'N0'),1
DECODE (DLKnM, N=L, 'COI!EL BLOCW,

DENOJCOD 3KCIlNLNLDRCNR

3LKN3Bfl~

DLRXZEC,
WVL (LKODYSOL 1 0)

INTO -L ,

BLEmpow

DLXOREC,
3LNOWF,

SQTNO
VICE STSTU. ZIDDLK
Nin ULKILPPID - LUPPID

AM UP1ER(3LIWU - UPPER(SDIOCKS)

* *****Define the VIEWL level zepozt select Masz@ *o

SZ~CT nin,

VWDQL=I
DECO=E(FLW=A,' TO', tyES' ,'WJ'),
DECO(FDE(VT, 'T', 'YES', #90'),
DECOD (VWLKn, IOUL, NULL, VWL K II'*') VLCW~W,

85

FWDIFLT,
DECOVDE(VWDDSP, 'T', 'YES', 'NO') ,

DECO(DE(VITZ, 'Y', 'YES', '30'),
DECODE (ULMODAUER, 'V' ,'YE', '910') ,
DECOID3(VIDPD&!E, 'Y' ,'YES','3O'),
DCDE Z(11DUIDU, 'V , 'YES', '30'),
DECODE(VLDr3aD, 'Y','YES','310'),
DECODE(VW1ZP,'V, 'YES' ,'3O'),
DECO= (VLDSIPM, 'Y' , 'YES' , '2NO'),#
DECODE(VIMIDE, 'Y'O , 'ETS', ,'NO'),
DECODE(r1WUTO?, 'Y' ,'YES', '30'),

DECODE (VWLOVT, NULL, NL, VWLYT I 1'.') 1 I VWW'JC,
vwxffa'
VWEXI,
1WDFIP I
1W1PAM,
VWLZnE

VWLIDM,
VWLDBik,

VLD3TA3,
FWKErT,

VLDDXSP,

VLDQUUY,

rwauDp,
vwvn='

VWDAU!OMR,
VWDUPPER'

VWLOW,

VRO6M SYSI'3. ZAPVW
WEREZ VLDILPPID - &SIPXD

AM VLDBLK - SULIW
ODER 3Y FZIDSEQ

.R=9 ***** SELECT msaro for FXZEX level ds~crip **

.DEWM VLlDDESCSEL

86

S3LEAT 1LOOSSCR1T

- ýD - 627LD

4 ***Y= SELECT macro for 31= level table descrip *~

.DWID ULTDSCBNL
SELECT TDESCRI1T
INTO TOWSCRm
ramK TAR=E DEIC

* 3~***,Def ine the SELzCT mwc= for moilezrlate **

SELECT NA1PAGE,
IRPLIR,

M&PLI3,
IBWT

VROK STST. IAPBIL
WHEE WAPPXD - LAPPID

OMDER B? MBP1AM, MAPLIN

.R **~"Define select macro to get logged an
3(***user rna (appoomer)

.DEVI QITUSR
SELECT uSE
MYO Apl

V3CK SSTM. XAP311

* *****START 31!

AM~*** Define the I1PLXCLTZON level report body
*"PRINT HMMDR, DATE, TITL, C

MN raFm, 3W~c, VIEW ZZYm 1O

*DEVIE APPUOD

#2 2.

D 1 TmTICU VaM SQLVOM APLICATIGR: \
*PRINT I1HW
#S 1

#S 1
ORR

REPORT A!ZOUTIC DLTE:

'7

* PpNT ToDaY

TITLE

#31

* RPORT 3PP08 ELO3DTOM

#T 2.

#08M 3100 LEVEL

#39

iTE
* XV"S3OCK ATIGS NLL APTRXfI ALLULOCKS A

EOT I MUISL LSD

*SAL"MOCKS sBL1 M LSOK
SREPORT UNZLKEEL DLKRODY

#T is
#8 4

* REPORT KAPSEL SWDuoo
#TE

* -~***PUNJT CDNMT EUuR

#8 1

* O PUNT CSU TE

.DEVIK OffEOD
*PRINT ONMTC

* = ***** vomK RAvE TRIGR zADER
DWVI= APPTRIGUE8

#T 2

as

#2 2 - - - - - - - -- - - -
#8 1

.mi *** ai0m LEVE TRIGGE 2=0
.DW1IN IPPTUIGB=

#T 2

Pa TRIGll

*PRINT TIW0Z8C

. PRINT TRWaIDE

#TE
#8 1

am* m REO T ITEszL sTEP300

AmU ***** ToPm LEEL TRIGGE zuW0B!I0K

#T 3

.PRINT TROAMQ
#3

. PRINT mozamU
#TE
#T 4
#3 1

* 3P0MV TG SZL 3 D

#8 1
#TE
#T 7

.PRINT TagSwU

ADORT TRIGM 3 STEP IRILB

.PRINT TWIRW

*PRINT TMAROLL

39

"12901 3UCCS aml ADOR!

PRINT !~CRGS

8SZPaR&! CURSOR DL ARA a

#5 1

VALRELBZL:

*PRIN! TF49ZAB
#T3

*Irv=L !301G no VMILMSG
#T a

VAIL iMSS5:

.PRINT !RSISG

.&N M3 AL MSG
#T 4
#3 1

* 33CPR! A1PTRIGCffSZL C~3ODTB OffuMi
#TE
#8 2

* -*~*PRINT TRIGR SQL SMTATU

*PRINT SQTTEC

* 31 * SIAMZO LEVEL XIIOSIBTIOU

#T 2
#8 2

N \ Block

.PRINT SEm

#.81

I#TZ

BLOM DESCIP!ICKl:

90

.PRINT B3XZSEC

.PRINT -LTM

#3 2

#Tz

NWZK FR CUNIQU DImX:
*PRINT ULiP.UC

#V0

.PRINT ULNIOUWC

NWMZR OF' ROWES/TORrJiS:
.PRINT 3LMBUJF

SAME LXNE:
.PRINT LUBLIN

#TE
. IF "SSQTUO - 0" TMU NO ORDE s!

#T 4
#9 2

-------- DEFAULT OrDER DY

#TE

#T 3
#3 1

'~ \ \FIELDS
#3

#3 1
STE

MO mmILIL VWC

91

.DWM m mia=

AM ***** 34 Z XG ou
.DEVZ 3ZW8GCDT

#T 4
*8 2

#8 1
#T.

B LKTRIBOD

* 2m ***** WA=C LEVEL TRIGx 300
*DIPIIE 3ZJCTRIG0

#T 4
ft

TYPE:
.PRINT TRIGTIPE

#3
DE8IISPTION:

*PRIM! TRXIDE8C
#u

BIDE:
*PRINT TRIOKIDE

#N
* REPRT 3LKTRIOfTSZL OTCOYS ONIS

#3 1
iTE

* REPOR BTEPBEL BSTEP300

RAM *** Mom LEVEL TRIGGM 114IVMT1STI
"*DWIIm 3STEP300

#T 9

#N EP "
"* PRINT TRGSEQ

"* PRINT TRGZLDEL

92

#TZ
#T 12
#8 1

* mo~T~rnL T3GTZTSCD
* RMOW XRT3GOT3L 011300? offIaD

#8 1

* IT 10

INC
ADRT TRIGMR UMn STEP FAILS

INC
*PR= TRMNV

* PRINT TRQRILa
#NC

RETURN StXcESS ON ABORT
#NC

*PRINT TRGICURS
#NC

SEPAMATE CURSOR DATA ARMA
INC
#NC
#3 1

SUICCESS LaSEL:
*PRnIT TRG8LAB

INC
INC

*PRINT T~AGNA
INC
#TE

X VN=L TRGISG SO VrAILMSG
IT n11

VAIL 3MSS&GE
INC

*PRINT T3015G

.&NO, jAID WOS
#8 2

.331 ***** VIEW LEAEL IW0OKAMIOI

#T 4
#8 2

#N

.PRxNT MOME

93

*PUDI! ILDIM
ft

#TS

#T 5

#T 4

#T 1.7
.23MCM3 IWUBOILBIL

.11 "GraVPAGE 0" T1 PA= 31Wt
DOILzaT3:

* PRINT DOILPLIATI

& PA=E 5310
DATALTIPE:

* PRINT FWDTYP3

FXILD LENGTH

*PRINT rWIM
#NC

*PRINT FWDQLU

PAGE:

* PRINT ILDIAGE

"* PRINT MUMIN
#NC

"* IVEULL ITACNW no FM c
COPY 53? PROW:

"* PRINT VIDCZW'WD

.&NO Fm CK
*IVNuL RI~rLTr no 7W DVrLT

D3FWULT VALUE:
inC

*PRINT VLDDVLT
#NC

.&NO FW DYLT
*iVnULL RML0K NORAM=

94

*PRINT vwwU)v
#NC

#NC
* PRINT IWBI

#NC

.IST VIL !53L3:

*" PRIN IWLOVC

#NC
* INV= LLu V~no NmOsw~

#T.
#T 5

*PRINT VWDELP
#TE
#T 17

IT.
#T 5

* REPORT rVWONSZL CUT3CDY OfUTMD

#8 -------- ATTRIN 3 ----
#3 1

#TE

D&TAB&83 FIELD:
#NC

PRIN1T VW3TAB
#NC

* PRINT VWFZT
#NC

#NC
*PRINT FLDDISP

#NC

.PRIT fl=QUW

GNUT ALWVMM:

* PRINT VWTURw
#NC

95

* Xv &VznwT334' no, TMN amD

UPDAT3 XVNLLOM:
#NC

#NC

#HC

#NC

#NC

*PRINT VLWIWD

A=TSKIP:

*PRINT VDSIKIP
#vC

NO WCHO:
#NC

.PRINT VLDBXDS

AUTO HEL&:
#NC

#NC
UPPER CAMi

#NC
.PRINT VW~UPPER

#NC

#TE
A PPOR! VLDTRIQSEL VW!TRIGB=D VWTRIGIEAD

#RR
DESCRIPTXOSI:

.11DEVXI VDEYHD

96

.DEVINE VWTRIEGND
#T 4

#S 2.

#STE

M**** VIEWD LEVEL TRIGGR D=0
.DEVIM VW!TRX00Y

#! 5

* PRINT TRIGTTPE

DESCRIPTIOU:
*PRINT TRtXPE5C

#HIE

* PRINT TRIGHDE

*REPORT FWDTRIGONTSEL OfUODMY OnTHEA

STE
* REPORT VLDSTEPBEL FWDSTEPDO

.RMD ***** XIEW LEVEL TRIGGE XNIORI&TXOE
*DEFXNX FLDSTEPD=D

#T 12
#3

.PRINT !RG8EQ

*PRINT TRGLASM1
#TE
#T 13
#8 1

.3EPOW TGXSEL TRGTXT300
*RMFOB! TRGCNf8EL CffUOD -lm

#8 1
STE
#T 14

*Pp PIT R0WE
#NC

AM"R TRIG=M wM STEP FAILS
#MC

*PRINT !IGINW
#NC

97

PUDETS REUR wDM
PXT 3PALL

REUTRN 8uc88s Oi ADM.

.1313! TUOCURS,

S3PAR&TZ CURSOR DLTA ARM

#8 1
gSnn3ss LAB=:

* PRINT TRGSLAB

FrAILURE LlaBL:
* PRIZE! TRrLA3

#wo
#TU

* IFuLL TPGA8G no VAILMSG
#T 15

VAIL MESSAGE
#NC

*PRIM! TR0ESG
#T3

&NO0_VAILMSG
#3 2

.R *** DR= TM SCRZU

* IV "apmaGEO-SaPPAaE' TWm LUIz~
#5 1

PAM
* PRIE! IBMAGE

two
* 3xL PAGCNOT MPPAGE

#S 1
.SIT Limalm IT

.aLahn=

.IN H5e"G-r-IE TEE LUL2
* IV "SLINEOET+1-EhpLInE" T1 L153L3

#8 1
*SLhu=L

.AMD LNZM1ET LIM0KT 1
*GOTO ZAN=~
&ShZAN=

to'.

98

*PUNIT P!EC!

Eu **~~Logic to identify the application, staft zelaft ~~
am MT Tus=

.&La= AP17XD

.ITELL "COULDN'T rXA2 APPLXCATXOK, TAT A~a= OR CML-y To gUXT-

. SO=TumE
* Eicnz3 m3uSU
.ASK "ma OF T SQL*VOIIS APPLIC&TION: ArMI
* EZRUT LIPSU
. IN "LAPPID Xg INULL" T1 BD ADPID
.ASK "DISPLILT SORED MP? (T) - aprhaG

U33 szmý.
*SET VWI "

.11G 0 60
* REPORT APPSEL APPUDT

99

Appendh H. Daa Colecdo Pi'gram

-- FACILIT:
-- Air Force Institute of Technology, Nxight-Patterson AID 0d
-- ABSTRACT:
-- 12 provides software support mmasr I for Oracle
-- database applications, by prompting the analyst for
-- additions, changes, and deletions to the baseline.
-- It also provides sizing by analogy by scannin the baseline
-- of SQL*robis data dictionary reports identified by the
-- analyst as similar to the software suport requested.
-- ATUOR:
-- Capt Steven D. Radnov, AFIT/LSG G8892D
-- CRATIWN DATZ:
-- Dec 92
-- MOMFIbITIOM HISTORY:

(tbs)

pragma page;
with Text._O;
with List Double UnboundedManaged; -- hooch Component

procedure 712 is pragma Optimize(Time);

type Data type is digits 3;

package Xatural 10 is new Text O.Integer zO(natural);
package rloatpt Io is new T&ezt o.rloat O(Datatype);

-- Actions necessary to support SU to enhance database applications

type SW Support type is -- s/w support function point actions

(ADDle, -- new functionality

CRMNM, -- modification of esisting functionality

DWLU!•, -- deletion of existing functioality

TOTAL); -- total of all software support function points

type SW runction xtype is -- Oracle database application

(TRANSACTOSES, -- fore, reports

INMTS, -- trigger steps, select statemants

100

UITZTxfI, -- blocks, tables

OUTPUTS); -- fields, print statemnts

-- Unadjusted Function Points matriz

type UP type is
array(SW Support type, SW Function type) of natural;

pragma page;
-- Technical Complenity Adjust•ent scale
subtype TCLscale type is natural range 0..5;

-- Technical Caplazity Adjustment
-- characteristics for array of scale values

type TM Characteristics is (
Data CQm=a-catioa,
DistributedFunction,
Per•o•mance,
Heavily Used_Configuration,
Transaction Rates,
OnLineData Entzy,
Design For End user fficiency,
Qnline Up~dite,-
Cowlamity ?Vooessing,
Usable Zn Other Awplications,
Installation Ease,
Operations ase,
MultipleBites,
Facilitate Change,
V.quirnat-s Of Otherý Appications,
Security Privacy Auditability,
'User Tra4IniNgjeeds,Dirzect Use ay•_Tr Parties,

Documntation,
Client Defined Characteristics) ;

-- array of characteristic values

type TO•type is array(TCi Characteristics) of WC&Ascaletype;
prgema page;
-- loop and string slice constants

NM NMm jangth : constant positive : ;
arz•m ~ength : constant positive - 40;

mx File mexangth : constant positive : 5- 5;
max Line Length : constant positive - 80;

101

-- String subtypes

subtype SU mber type is string(I.. SUMan _agth);
subtype ami type is string(l..MazNae Length);
subtype File"amm type is string(1.. Max FilejmILegth);
subtype Lineýtype is string(1..NMz_Line Length);

FF2_ elp Yilenma : Fr1emmt type :- (othsr->' ");
An" car : character;

-- Input function points

type Step _ode_type is
record

Name : Namm type :- (others => ,);

Support : 5. SupportType T-TOTAL;
end record;

package StepList is new
List Double Unbounded m aged (Step-PodeItype);

-- Output function points

type Field Node type is
record

Name : Eaza type - (others -> ');

Support : SW SupportType - TOTAL;
Steps : Step List.List :- StepList . •liList;

end record;
package Field List is new

ListDouble.a-ouded_ Mmaged (FieldMode type);

-- Process function points

type BlockNodeatype is
record

Nam : Name type - (others -> ,
Support : SW Support, Type T-OTL;
Steps : StepLst. List : Step List .Hull List;
Fields : Field List.List :-Field List.Mull List;

end record;
packe lock List is new

List DoubleUQbunded-anaged (Slocikodetype) ;

-- Transaction types

type amppode•type is
record

Name File Name type :- (others -> ,

102

IP : U•IPtpe :- (others -> (0, 0, 0, 0));
Support : Support-Tpe :- ; To ;
Steps : Step List.-List -Step Lst .ull List;
Blocke : Block List.List B Sloak List. Wull Lit;

end record;
package ampLst is new

List DoubleUnboundedsnagd (AppNode type) ;

-a mUR infoinetion

type Projectxods type is
record

OMim n: S umber_type - (others ' ;
TEAMx : Nmietype :W (others ; '

Code Nh.: Data type - 0.0;
Test Wks : Data type : 0.0;
Code ra : Data_type : 0.0;
Test Mrs : Data type : - 0.0;
WPs : WR type :- (others-> (0, 0, 0, 0));
=a : TCk type :- (others-> 1);

Apps Am 6ist. List = App List. MutllList;
end record;

package Pro ject List is new
List Double _mbounded Manasd (ProJectý ode type) ;

Project : Project List.List;

Project _Option character;

-- Prot User for project SuM

procedure Get _S (SUnmi: out SENmbertype) is

fuffer : Line type;
Stri•gZdngth : integer;

begin

SUre un :- (others R4 1

Text 0o.Mew Line;
vezt iO.Put("anter the Software Engineering PAquet nt e :
Text 10. Get Line (uffer, StraingLemgth);

if StringL ength > SURNmingth

then
Tmzot10. New Line;
Text10o. Put ("-M Mus truncated to -- >" A

103

Buffer (1.. SnR 3w lngth) G "<");
S3 Wa(l. SE _Mm Length) :- Dafez (1..S SU3mLmength);
Tezit 0.3evLine;

else
SZIýMx(1..String Length) :- Sufler (1.. tring Length);

end if;

end got SIM;

-- Prompt user for the team ...

procede GetTe_•am (Team XD: out 3~ms type) is

Buf fer : inOe type;
String Length :integer;

begin

Teft 10. Put
("anter each member of team alphabetically (using e-mail IDa), ");
Text_1o.ev_ Line;
Tezt 1o.Put ("sepaated by non-alphabetic chazacters :");
Text 10. ame Line;
TexIzo.Put(">");
Text3o." GeLIne(Buffer, StringjLength);

if String Length > DiazNamle nmgth

then
Text10o. New Line;
TextIO.Put("Temm XD truncated to -- >" S

_uf=fe(..Maz Name length) ;
TeamXD :- Duffer (1.. NazNamenength;
Text_10.3evLine;

else
TeamXD (1.. StzingLemngth) S uf fe (1.. StrngLengqth);

end if;

and get-Tom;

pragm page;

-- Clears screen with DNC VTl control codes and puts border at top.

proedu re Clear Screen(With Line Of : in character) is

104

constant string : character' val (27) a "C2J" a
character'val(27) a "[3";

begin

fert 10. Put (ciii);

foriinl 72 loop
Tint 10. Put (WithLineOf);

end loop:

end ClearScreen;

-- jJj��� ii ii iiiiiieiiiiiiuiii liii iiiiiii jitiltitti ii 111:111111
-- Gets a character after pra�ting with string proYidmd.

function Get Optics (Proept in string) return character is

Char character - '

begin
Tezt 10. Mew Line;
Tezt 10. Put (Proept);
Text IO.Get (char);
return char;

end Get Option;

pragee page;

procedure 1123 (Project: in out ProjectList List) is separate;

procedure 1123 (Project: in out Projectiiist List) is separate;

procedure VP2& (Project: in out ProjectjSst . List) is separate;

procedure VP2V (Project: in out Project List. List) is separate;

procedure 1123 (112Delpjilenain : string : - "fp2 .hlp") is separate;

-- I:IgIIiIIgIItItIIIIIII:IIIIIIIIIIIIIIIIIIIhIIII:IIIIIIII:IIIIIIIII
-- Displays a header for min Progrin

procedure Deader is

begin
Text 10 .3ev Lime;
!intIO . Put ("Software Support Sisiag aud Ustimting");
Text 10 .3ev Line;
Text 10. Put ("with Mark II Inaction Points for Oracle Databases");
Tint 10.3ev Lime;

end Deader;
pragee page;

105

-- i afiafii fiafi2fi:8ImIIIIAIa ,IIaIIa,!aIIIIaIIIIIIaIaIIaIaIaIIaIa

go st options for sizing and estimating

Pr~ooeave wtý Option (Pro ject Option: out character) is

option : character;

begin

2%ft XO.New Line;

2extj0. Get (Option);
Projecta option :- option;

eZoe~pti4On
when lintZO.Data Srror

Projec~t Opti~on -M01

end Getý option;

]-rooter for amai program

procedure rooter is
begin

lertlIO RevLino;

2ent 10. New Line;
end Vooter;

pragima page;

begin -- VP2

ClearScreen (Wit~hLine_ Of->'-i');
et O.Put(" FP2")

VP21 elp yilenam
(Max: FiUR Nmarn Legth-7+1..Naz File Nmmjength) ="FP2 .3WP";

Reader;

L: loop

Get~Option (Project~Option);

case Project option is

when '3' 'a' -> P2S(Project); t- ime

when '3' 'a' -> P22(Project); -- Utimate

106

when 'a' I 'a' -> P2&(Proj~ct); -- Actual.

when IQ, I 1q' ->V V(ProJect); g- ave
exit L;

when others -> ME2 (112LEelpYilenams);

end case;

Clear Screen (WithLineOf->'-i');
Text IO.Put(" 112 ");

end l.oop L;

rooter;

exception
when Text_10. EndError ->null;

end 11P2;

separate (112) procedure PP2A (Project: in out Projeat-List.List) Is
pragma Optimize (Tim);

Pro ject mode : Pro ject Mode type;
abised :character :- 'N';

procedure VP2AG (Project: in out Project Nod@Ltype) is separate;

procedure PP2&P(Project: in out Pro ject Mode type) is separate;

pragma page;

begi n -m M~A

Cl~ear Screen (Withk LineOft->' -')
Text IO.Put(" 112A)
Text~io. skip *mn;

Got SU(P~ro ject Node. SEz1Ln;
aet~iesm (Pro jeci ode. Teast D);

Text 10.3few Line;
wsText 1. MewLine;
Text 10. Put ("bor 53* & Project mode.m SUmi &

", Tern:" & Pro jectNods. Tern ID);

1125G (Pro Ject.Mode);
Pro ject-List. Construct

107

(The Item -> Pro.*_tNode, AndThe-List -> Project);
P2AP (Pro:JectNode);

and FP2h;

separate (VP2. VP2A)

procedure VP2&G (Project: in out Pro ject Nod. type) is
pragea Optimize (Tim);

pragem page;

-- Display header for main procedure f2]AG

procedure Reader is
begin

Text 10. New Line;
Teztlxo.xNwýLine;
Tezt o. Put_

("Tom@, reports, and/or tables " &
"ADDeD, CNAlmZD, or DZ3JLT to support the 8331" &
Project.,SR n•um);

Text 10 .Nev Line;
Texzt o. Put

("ADDXD: created a completely =w form, report, or table");
Text 10.Nev Line;
Text 10.31ev Line;
Texzt 1o.Put
("V353: components within smisting form, report, and/or table");
Tezt_1o.3ev Line;
Tezt_1o. Put

("i.e. ADD, CEG, DEL blocks, fields, and/or steps XN a form.");
Text 10. NewLine;
Tezt 0o.Ne-_Lie;
Texzt 1o.Put

("DiLMED: completely deleted emisting fore, report and/or tbl.");
Text 10.3evLine;
Tezt 1o.0 x._Line;
Tezt_0.Put("lznter data in this foint: 000.0");
Text 10. ame Line;

end Heder;

prag•em page;

-- Get Actual Function Points Supported

procedure Get Actual is

Any !Car character;

108

begin -- Get Actual

Got Code Wks:
begIn

Text_-10. Put ("Calendar weeks elapsed during coding >")
Vloatltl0. Got (Project. CodeWiks);

when Tezt 10. Data Error
Text I0.Put("Enter data in tis fomat: 000.0");
Text IC. Put (ASCII. NIL);
Text 10. New Line;
Text_10. Put ("Calendar wvks elapsed during coding>");
VloatPt3O0. Get (Project. Codelike);

end Get Code Wiks;

Get-Test Wks:

Test 10. Put ("Calendar weeks elapsed during testing >)
IVloatftlXO.Get (Project.Test liks);

exception
when Text 10. Data Error ->
TextI0.Pu&t("Ent~er calendar weeks in this fo-ut: 000.0");
Text 10. Put (asCI. DEL);
Text 10. Nowv Line;
Text 0. Put ("Calendar weeks elapsed during testing >")
Vloatit 10.fGt (Project .Test liks);

end GetTest liks;

Get Code Rrs:

Text 10. Put ("Man hours spent on coding >)
VloatftI . Get (Project. Code Irs) ;

exeton
when Text 10. Data Error ->

Test 10. Put ("Enter mian hours in this fomat: 000.0"1);
Text 10. Put (ASCII. DEL);
Text_10.3evLine;
Text IC. Put ("Man hours spent an coding >)
VloatftIO.Get (Project.CodaKra);

end Get Code are;

GetTestBrs:

Text 10. Put ("Man hours spent on testing >")
Ploa~t-It . Get (Project. Test ars);

exe ain
when Text 0. Data Error ->
Text X0.V3ev Line;
Text 10. Put7("Enter test mian-hours in this fomat: 000.0");
Text 10. Put (ASCII. =EL);
wext 10. ew Lime;
vezt 10. Put ("Man hours spent an testing >)

109

FloatPtIo .Get (Project. Test Bra);
end Get Test-Bre;

Get Functions:
for Functions in SK Functioný type loop

Get-support:
for Supprt In SM Supportýtrpe loop,

Block:
begin"
Text 10. Put

(On Functionk type'image (Functions) & ,

SWrSupportýtmpe' image (Support) & >)

if Suppo;rt - TOTAL then
ProJect.WFW TOTAL,Functionh):

Project. UFPs (ADDD, Functions) +
Project. UFPS (CBA3M, Functions) +
Project .UFPs (DKL3TZD, Functions);

Natura3l 0. Put (Project. UFPs(TOTAL, Functions));

Natural IC. Get (Project. UFPs (Support, Functions));
end if;

end Block;

end loop GetSupport;
Text 10. Sme Line;
Text 10. New Line;

end loop GetFunctions;

Any Char : - Get Option ("Any char to continue >)

end Get Actual;
--
pragma page;

begin -- FP2AG

Reader;

Got Actual;

end FP2AG;
--

separate (FP2.372A)
procedure FP2AI (Project: in out ProjectyNodetype) in

pragms Optimize (Tim);

110

Data rile :Tezt 10 VPilot-type;
Ccl Text 10. Positive Count :- 1;

prages page;
begin -- FV2AP

* ~TextImc.reate (ile-m> Data File,
madam> Text io. out f ile,
3Kxern-> of"sej & Prject.S=RMm a ".dat");

Text 0. Se1tOUtput (Vile-> Data File) ;

Text 10. Put (project. Team ID) ;
Tet .Put (Project.s~ sun~);

Vloatft 10. Put (Project. Code Wiks);
FloatPt_10x. Put (Project. Test liks);
Vloatilt 10. Put (Project. Codelire);
Floatlt 10. Put (Project. Test~ars);

SW -Support:
for Support in SM Support, type loop

SW Functions:
for- Functions in SW Vunction týype loop

if not (Support - TOTAL)
then

Col :- Teft10. Positive Count (integer (Col) + 5)
Text 10.8Set Col (To-> Col);
Xatural 10. Put (Project. UVe~s upport, Vunctiona));

end if;
end loop SW Functions;

end loop SliSupport;

Text_10.3ev Line;
Text 10. Clo-se (Data File)
Text 10. Set Output (Vilo-> Text I0. Standard Otu)

A"y Char :- Getý ption ("Any char to continue >")

end MAP;

--

------ --
prague page;
separate (VP2) procedure FP23(Projeat: in Out Project List.List) is

pragma Optimize (Tim);

* Pro ject Mode :Pro ject pode type;
LastC1har :natural :-0;
SIMSize : natural :0;

procedure 1P23T (T~ : in out TCA type) is separate;

begin -- Wp2z

clear Screen (WithL Ane Of->,' - ;

TeztIO. Put (" FP22 ") ;

if Projeat-List. Xs Wall (Project)

then
!~t_10.Put ("No projects.");

also

case
Get Optics (IDo you want to change default !CAs (YIN) ? ")is

when IT' I 'y' -> FP23T(ProjectNode.TCA);
when others -> null;

end case;

Project Nods :- ProjiectList .Nsad Of (Project);
!ezt 10. Put ("For 3139"1 A Pro ject. Node. SKR~ Um

", and teaim: " & Project Node. Teaa3D);
!eztl . New Line;

for i in reverse 1. . mNR Ran Agth loop

if Pro ject Node. SU NumCi)I-
then

Last Chat :- i;
ezit;

end if;

end loop;

for j in Sw Functioný type loop

TeftO X. New Line;
vsetIo.Put("~he ezisting baseline has

for i in reverse SWý Supportý type loop

Matural-0.Put (Pro ject Nod*. UPs (i, j))
Teztla0.PUt(" -");

!eztO 0. put (SWSupporkt type image Mi G
Tezt3o. Put~x (SWFnctiosktypeimage (j);

if i - TOTALI
then

Tezt 10. Put
(", and 53W" & Project Node.0 S3NUM & "requires ..)

elsif j /- TRMANSCTIOSI
then

maL Size am 53site + C Projectý Nods. WPO (i,) J)

112

end if;

TaftlO .New Lime;

end loop;

end loop;

!ezt_o. WevLine;
Taft 20. Put

("The size of 8338" Project ' mods. =aNRun G " Is &"
naturali'mage(S3 $Size) A " Mark iX runctiom Points.");

!eztXO .3ev Line;
Tezt 20. Put ("3stimated effort is <> " &

"staff-hours, 0 " & "calendar-weeks.");
!ezt2O0. New Line;

any Char :- Get Option("Any character to continue ...

end if;

end VP2Z;

pragma page;
separate (PP2. rP2) procedure rP2ZT(TCA in out TC&ý type) is

pragma Optimize (Tim);

Count : natural :- 0;
Project node Projectnode type;

-- --II

procedure Reader is
begin

TeztI0. put
("-(value) of Technical CaMqlezity Adjustmt characteristics:");

TeztIO .3evLine;
end;

Um

begin

Reader;

for i in MCA Characteristics loop

Count : Count + 1;
Tezft_0. Put (natural' imag (Count) a ": (");

113

Text 10. Put (TCAgoale type'I image (Pro jectý mods. TCh (i)) a))

Tezt-10. Put (TCA Characteristics' imag (1))
Text 10.New Line;

end loop;

end FP23!;

separate (11)
procedure 1125 (VP2L elp yilenams: string ":E-"p2. .hp") is

Selp Yile :Text_10. File type;
Help 4mne Line type;
Last Chr : natural;
Any Char : character;

begin

Clear Screen (Nith Line Of->' -');

Text 10. Put~l C" MI!>");

TextIC. Open(Help Vile, TextIO. In Vile, 112 Kelp yilenams);
Text 10. Get Line (Helpile, Help LineLast Char);

Help:
while not TextI0.2ndOfFile loop

Text 10. NewLine;
Text 10. Put (Help Lin (1. . Last Char));
Text_0.t GeLine (Help Vile Hep lie, ast Char);

end loop Help;
Tezt30O. Close (Help Vile)

whnText IC.~m Ear ror -

Text NC ew Line;
fTetxt_1.3ev Line;
Text 10. PutT(112_Help Vilenw & - not found.")
Text 10. mevLmn;
Any char :=70GetOption ("Any character to continue .

when Text_10. NndUrror -

Text 0. aem Lin;
Any char :- GetýOption ("Any character to continue .

end 1125;

separate (11) procedure 1128(Project: in out Project-List .List) in
pragea Optimize (Tie);

114

ro:jetNode : Projec• Nodme type;
AMNoe AM Node._type;

uretApp App *at.List :- App List.WiLllList;
App.~ Am List. List : - Amp List.Q NulList;

procedure 1123G (App : in out App &Lst. List) is separate;

procedure 11281 (App :in out App List. List) is separate;

procedure 1123k (App : in out App List. List) is sepazate;
prama page;

begin -- 1128

Clear Sceen (With LinOf-' -');
eztIO.Put(1128 -)P ;
~ezlz0. SkipLne;

Get S (Pro:jest Nods. sakNom);
Getemn (Projet Node. femn ID);

lezt 10. Nfew Line;

leztO. Put ("For 8n8" & Project Node. 3M Um &
"T eam:" & Pzoject Node.team XD);

11280(1trojett tode.Apps); -- Get size of project

ProjectList. Construt

(noeItaim ->roject Node, And lbsList -> Project);

cutent_ Amp : Io ject~yode .Aps;

while not App 2Lit. sNull (Curzentý App) loop

Uztract: declare App record : App Node type;

begin

App record :=- Appst.ead Of (Curzret App);

it App record.w(DLN3 l, 3NSACIIONS) - 0
then

128X (Current App):
end it;

CurrentApp : - Appist. La Of (Currnt App)m;

end Zztract;

end loop;

115

currentý App :- Project-pode. ipps;

while not App L6ist. - s gull (Current _App) loop

VP2BR(Cuzrret App);
Amppods :- AMpList,. eadOf (Current _App) ;

for i in Si Suqpport type loop

for j in SM runctioOntype loop

Project Nods.wps (i, J) :-
Projec-t Node.UI'Ps (i, J) + Amp de.I' (i,j)

end loop;

and loop;

CurrentL Ap App Piet. Tail Of (Currentý LW);

end loop;

Project-List. Set Road

(Of-The-Lint->Project, To Thqteýt>?rojectiode);

end FP2S;

prage. Page;
separate (PP2.VP2S) procedure VP23G(App in out ALpList.List) is

pragum optimize (Tim);

-Got Apps

procedure GetLW p(Support :in SK Sujpportý type;
AMW in out LW...Lit .uLst) is

App..record LW..An ode...type;
Buffer :LineL type :- (others W>
Stringj-ength :natural -0;
All"ALps :boolean -false;

File NaMe V ile Namstp :M (others->)

begin -- Get...App

TeztXZO. Skip Xdme;
pragem page;

est Am*:
loop

116

Vie Namm (*themse>
uftfez (others ->

fazt-lO. Now Lina;
!ztZxO. Put (W8'W-vport typ' Lnase (Support) ">)

allý awe. - true;
Text-10. Get-Line (Dulfer, String Length);
Vie 3mai : - uffex (I. .65);

for L L i. . 65 loop
if Vi* mamsi) /

then
All App. - alse;
exit;

end if;
and loop;

if All Apps

then
!intIO .3evLine;

alse
fast ZO. Put (Vile Name);
apprecord. 3ami- : - Vilne ms;
AMpp ecord. Stepis -Step list. .3a11 List;
Amppecord. 3locks B lock Lis*t.N*WuaLjist;
AMpp rcozd.WP (Svpport,-z!zaasations) :- 1;
Apprecord. WV(!OVAL, Tranuacticus) : - 1;
am pLiat . onstruct

(The ZXtm ->' App record, And 2eList -> App);

an if;

exit Got awe when Allý Apps;

end loop GetApps;

end Get App;

pragem page;

-- xplain what to enter for each support type

procedure Uxplain (Support :in SWýSuppor ttyp) is

case auppot is

when An= ->

117

Text 10.3ev Line;
Tet10Sel;-Line;

Text 3O.Put("*NOT=* App. to be aID will be sized " G
" by analogy to existing Appw.");

Text. 10. now line;
Tt 10. Put

("inter the filenems of '.VP2' files of existing Apps ");
TIext 10. New Line;
Tet 0o.Put

("-siu•lar- to the Anpp that you will be developing for M :");
Text 10. New Line;

when C ->

Text 10. New Line;
Text 1o. Put

("Lnter the '. FP2' files of existing Appe to be C3I)"
Tezt o..New Line;

when DI,=TD _>

Text 10.3New Line;
Ts:t 0o. Put

("Rater the '.rP2' files of existing Anp to be D:LI)
T 10_o. NewLine;

when others -> null;

end case;

end Ixplain;

pragma page;
-- IIIIIIIII:gII:

-- Display header for main procedure FF28G
--- --
procedure Reader is

begin
Text 10. Niew Line;

Tet1.Put7
("IDUTIVY A1P1 TO WB ADODED C3JJI, OR DIL3T= TO 3UPPOW SIR");

Text 10. New Line;
Tet1. NewLine;

Text_10. Put ("hDDZD: moans creating a completely new App.");
Tet 0. Now Line;

TexI.New Line;
Text 10. Put

("Clawm: manms that, within an existing App, you need to)
Text 10. NewLine;

Tet1. Putv mmAD, cmG, or DX some blocks, fields, or steps.
Text 10. NewLine;

118

Text 10. New Line;
Tet2.Put7"DZIMZD: Means completely deleting an ewisting ApM.");

Text 10X. New Line;

et2. Put ("When entering App names, enter ome per prompt.")
Text 10. New Line;
waztIzo. Put("To, exit fromi the prompting, enter no file name)
Text 10. new Line;

Tet2. New ine;
Tezt_0o._Put

("Now choose ome or more of the software support actions:");
Text 10. New Line;

end Redadr;

pragm page;

begin -- 1P2SG

-- Get App nam and saiport action

loop

case Get•Option
("App to be (A)dded, (C)hanged, (D)eleted, (n)o Nore : ") is

when 'A' I 'a' m>
Zzplain (AnDs);
GetýApp (ADDE, App);

when 'C' I 'le' v
Zzplin (CRA30M) ;

GetWpp (CAM ,app);

when 'D' I 'd' ->
Uzplain (DMATE'D);
Get App (DNLZT, App);

wben others -, exit Get App Action;

end case;

and loop GetApp_cation;

Text 10. New Line;

end lrP28G;

separate (772. P28) procedure V128R (App : in out AM_ ist .List) is

119

pram Optinize (Tim.);

mpMde: App od.type;

-- iaii samomainýiIII iiiiiiiiiiiiiiiiiiiiiiIiiiiiiiiiiII 9

-- Bleader for VP2 Size Rqpir•Lent

procedure Deader (Aw Xarn in FileE~moktype) is
begin

Clear Screen (' -');
Tezt IO.Put(" VP2SR ")

ea 0. .3ev Line;
Texa-10. Put ("size of the SIM for App: Am
Tea o. NoewLine;

end;

pragma page;

-- Pr•mpter for FP2 Size equirement

procedure VP Changed (W : in out UVP type) is

Umaing : natural -0;

function Promt With
(Question: string; 4imit: natural) return natural is

Function Points : natural :- 0;

begi n

riet FP:
loop

Block:

begin

Text 10. New Lim;
eat7_o. Put iQuestion);

Natural10. Get (mFction Points);

if punction points > Limit
then

Tet -10. Put (natural' image (Vunction Points) & & "

natural' imge (Limit) C " ramadning,");
else

e•it Get VP;
end if;

120

when TentZO.Data Error -
Tezt 10. Put ("ZUETU AN XIGUT ")

end Block;

end loop GetP;

return lunction Points;

end Prvmqtwith;
pragma page;

begin -- TP-hanged

support:
for Supported in ADDED .. DELZTI loop

Functions:
for Functionality in XMPUTS .. OUTP 3 loop

care Supported is

when ADDED ->
P:ining natural' EaST;

when MaRM ->
Reman:ag- natural (MP (TOTAL, Functionality));

when DLZTM ->
Paiming - natural(UTP(TOTAL,rvnctionality)) -

natural(t UP(CEA,, unctionsality));
end case;

case Functionality is

when nPUTS -> U, P (Supported, Vunctionality) :a-
ProltWith ("Row may trigger STEPS will be " &

SWSupport-type'imsage(Supported) S ": ", emaining);

when ITZTZES -> UP (Supported, Functionality) :-
propt With ("Vow many 3LOS will be " &

SWSuppor type' inage (SUppoted) & ": ", fmnng) ;

when OUTPUTS -> P (Supported, hunctioality) : -
Prowpt With ("Bow many VIEWDS will be " &

SWSK rt type' imge (Supported) & ": ", maiig);

when others W> null;

end casm;

121

snd loop Functions;

!ezt 10. Nw Line;

end loop Supprt;

sw4 PV changed,

prages page;

r- ooter for F12 Size Plaquirimet

proosdars rooter (Ampp Warn in pilo salktyps) is
begin

Tezt 10. New Line;
Text 10. Put ("Sized Requirimet for App: wAmapEm

Text 10.aNw Line;
and;

begin

if not Amp List. Is ftll (Amp)

AMp Node :-App List. Rsead Of (App);

if App Node. uIP(cEA3), TRANsacTIOU) > 0
then

Reader (App Node. Me&);
rv1 Changed (App "od. UI);
App List . get Heed (OfkThseList-Mmp, To lbs Itempp od)
Footer (AmPpods. Noar);

elsif App Noe.UV (hMDD, TRANSACTXOUS) > 0
thlen

for ± in nIPUTS OU TPUT$ loop
App Nods. WP (ADDED, i) -App Nods. WVP (TOTAL, i);

end loop;
Amp ist. got Read (Ofý ThatList-Mmp, To The-Xtsm>Appd);

end if;

else
Text 10. Put ("Emty Amp list");

end if;

end V?28R;

with Pattern Match Reguxlar Nxqpzension; -- Dooch Coqpoment

package =XUP is new PatternMatch RegulwýAbsression

122

(Zten m:. chazacter,
Xadez - positive.
Xtemi string,
Any.Ztem >

Uscape.tem -) '\',

Not Item =>

Closure Item -> ,*,,
start Class => '[',
Stop Class -> ']
Xs Equal => -- ;

pragm page;

with GiMP;
separate (1P2.1525) procedure 1123K (App: in out App 4Lst.List) is

pragee Optimize (Tim);

type Part type is

(NULLPwa., -- ignore, continue scannin

BLOCK FART, -- block detected

VIEDiPM, -- field detected

TR-GG, _M 1PART, -- trigger name detected, wait for step nuv

STMIRNER_ RT); -- step numer, trigger step ID complete

type Level type is

(APPR _lL, -- looking for trigger steps, then blocks

BlCo _LVEL, -- looking for trigger steps,
-- then blocks and/or fields

VIELZEDVL); -- looking for trigger steps,
-- then blocks and/or fields

Level :Level type : - APP LEVEL;

Stopod : Step Nodet type;
Field Mods : Vrield. Nodel type;

Soak node : block NMode _type;
APP-?Gde : App Podettype;

The File : Taz 10. Vlet type;
TheýLine : Linsetype;
UndL•ne : natural;

123

TnePattern : Line type;
Rod Pattern : natural;
TheData : Linetype;
Had Deta : natural := 0;

first Char : natural : 0;
Last Btar : natural U 0;
Line Number : natural := 0;
Colm Number : natural : 0;

Stop- Scroll character :- '

pragma page;

-- --II

procedure Sca_ Line (The Pattern : Line type;
Pattezn_Length : natural;
ne Line :Line type;
End Line : natural;
The_Data : out Line type;
Ead Data : out natural) is

Hit, Column : natural : 0;

begin

The Data :- (others => '

Hit: -GP. Location Of
(Th•e Pattern (1.. PatternLength), TheLine (2.. End Line));

if sit > 0

then

for i in 1. .End Line loop

if The Line Mi) I ,

then
Col•a :m Colum + 1;
The Data (Colum) : Thene M();

end if;

end loop;
Bnd Data : Colum;

else
Bad Data : 0;

end if;

124

zoaeption

when EP Pattern Not Found =>
End Data :- 0;

end San Line;

pragem page;

-- tPartOf,_Ap

function Part Of App(CurrentLine : in Line type;
Currentline End : in natural)

return Part type is

The Data : •rneLtype;
End Data : natural;
Part : type : uall Part;

For Stop Length natural :- 7;
rot Step unmber Line type;

For_Trigger.Length : natural :- 6;
PotTrigger Name Line type;

ForFiheld Length : natural :- 18;
For Field Mm : Lin type;

rot BlockLength : natural :- 18;
Por_lock _amas Line type;

Start Zere natural;

pragma page;
begin

Fot Step pmber(1..PorStepLength) :- "STEP =
ScaLine (Pot Step ?mber, For Step Length,

Current Line, Current Line End, The Data, End Data);
if End Data > 0

then-
Part : STME_ R PAM;
for i in reverse 1..MaxNarm Length loop

if Step Mode.amrn(i) - '

then Start •ere :- i+2;
end if;

end loop;
step • .e Nam (start ere..Max am Length)

TheData (I.. iaz _mmLength-Start ere+l);
end if;

125

Vow Triggerý Wame (I. .VrozTriggezrjength) -"TYPE: "

ScanLime (ForTrigger Warn, For Tviggezr Length,
TheLLine, End _Line, Thea Data, End Data);

if Znd Data > 0
then-

Part : - TRIG= UMaI.PART;
Step-Wade. Warns :- The Data (1. .M N amis-;ngth);

end it;
pragma page;

Vozw Vield Warne(l..Vor Field Lengtb) :- "VIEWD (01234567891";
Scan Line (Vov Field Wass, VorVield_.Length,

Theý Line, and Line, The Data, Enkd Data);
if EndData >70

thený
Part :- VIEWD PART;
Field Mode Mmxi : - The Data (1.. Mz Nm Length);

end if;

For Block Namm~l.. brSlock_Length) :- "Block [0123456709]";
Scan Line (Foz Block Warn,F VolockýLength,

Theý Line, End Line, The Data, End Data);
if End Data >70

then-
Part BLOCK PART;
Block Wade.Nami := The Data (1..a NamWrnength);

end if;

return Part;

end Part, Of AmV;

pragma page;

begin PP 23X

AMpNd : - App List. Bead Of (App);

for 3. in 1.. Max File Maximn Length loop
if App pods. law (i -

then
Virst Char :- i:
exit;-

and it;
end loop;

for 3. in reverse 1. .Maz file MasimLength loop
if AMp Mode.ummni) m

then

126

Last Chat -i;
exit;,

end if;
end loop;

Text 10.3evLine;
Tet1. Put7("Opening " ppode.Nge(First Car.. Last Char));

TeIxtI.Put(", and reading");
Text 10. mew Line;
TextO . Ope-n

(nheFile, TextIO.IuVile,
ampp ode. Earn (irstChar.. Last Char)

Thzurile:
while not Text 10. EndOf Vile (ftheVile) loop

TeztxtI. et.Line (heý Vile, The-Lime, andLine);
Line Number : - ine Number + 1;

if LineNumber mod 100 -0
then

Text 10. Put ("Line *"anatural' image(Line Number));
Text 10. New Line;

end if;,

pragma page;
case Part Of App (ThLine, and Line) is

when BLOCK PART ->
Block Node. Steps: StepList. Null list;
Block Node. Vields F ield List. Null List;
aloci List. construct (The 1~tamiSloa Node

AndTheListin)App Nod. locks)
App yWde. WP (TOTAL, MTXTIES) : -

App Pode. WVP (TOTAL, ENTITIES) + 1;
Level :- BLOCK LEVEL,

when VIEw PART ->
Field Node. Steps : - Step L6ist .Nll List;
Vield-List. construct (Te t~xtmoield node"

And The List-Elock Node. Vields)
Amp Nod. vP(TOTALVW TP S) :M-

Amp Nod. Vp (TOTAL, OUTPUTS) + 1;
Level :- VIEWLEVELM

when ST"P MNWU PART -'>
case Level is

when App LEVE -> -- add to App PTS
Step Pist. Construct (The 1tew>Ztep " I

And The List-> App od. Steps);

127

App Node. UN'? (TOTAL, INPUTS)
AmPpode. UN'? (TOTAL, INPUTS) + 1;

when RZX= LEVEL -> -- add to BLOM STEPS
step List. Construct (The Item>Step Node

AdThe List-> Block ModeS.taps);
AMppode. WP' (TOTAL, INPUTS) - I

App~yode. UN'? (TOTAL, INPUTS) + 1;

when rhELD' LEVEL -> -- add to rIEWD ISRP
stop LPist. Construct (The -Item>Step yode

And!M List-> rield Node. Steps);
App Node. UN'? (TOTAL, INPUTS) ..

App Pode. UN'? (TOTAL, INPUT) + 1;

end case;

when TRIG=R NAMPART - null;

when NULL PAR.T ->null;

end case;
pragma page;

if not Field List .e X*ull (Block Node.rNields)

then
N'ield List. Set Head (OfThe Listin>Block Node.rNields,

To The Itew~ield Node) ;
end if;

if not Block List. Is Null (App Node. 3locks)

then
block List'. St Head (Of The_List-)App Nod. locks,

To The Itew>Rlock Node) ;
end if ;

end loop Thzuj ile;

for j in Sw Function _type loop
Natural 10. Put (App Node. UN'? (TOMA, J))

end loop;

-- Stop Acroll :- Get Optioc ("Any key .

App List. SetRead (Of The List -> App,

ToThe Ite -> App Nd)

TeztXO . Close (TheL Mie);
TtO.New Line;
Tet1.Put (-Closing " & Amppods. name wNirst char. . Last char);

Tezt-IO .New Line;

128

oexeption

when Text 10. Name Urror -

Teft 10.w NwLine;
Teztxt_. PUt (Ap Node. Mame a "nft found.");
TetxtI.Naw Line;

end W12SZ;

pragem page;

separate (FP2) procedure M1V (Pro ject :in out Project List.ULst) is
pragea Optimize (Tine);

Pro ject Mode Pro jectjlods~type;
AMp Mode AMp Nods type;
LastChar natural :- 0;-
SQLVlename File Mame type -(others -

rP2VOPutput TeztIO Wtleý type;
FP2V' SLý File fext 10. ftie type;

procedure Save Steps (Steps :in Stop ?ist .ULst) is
step Moe Step Node type;

begin
if not Step List~xsMull (Steps)

then
SUaIeStepe (stop ist . Tail Of (steps))
Text 10. Mesw Line;
stevpNode :Z step List. 3eadf (Tmhe List -D steps)
Text 0. Put (Steppode. Mm);

end if;
end Save Steps;

procedure Save Wirelds (Wields in Field List. List) is
Field Mode field Modeý type;

begin
if not Field List.e Is ull (Wields)

Save Wields (Wield List. Tail Of (Welds));
Text 10mNemLne;.

129

Field Mode :- Field List. Read Of (>_Lst Fields);
tezt 10. Put (field Mod•e• .Ma) ;
if not Step List. Isull (Field Xod. Steps)

then
Save Steps (rield Mode. St-ps);

end if;
end if;

end Save fields;
pragma page;

procedure Save blocks (Slocks :in Block List.-List) is
block Mods Block ModeR type;

begin
if not Block List. s Ml (Slocks)

then
Am mode. ur? (TOTAL, XTTINS) .-

App Mode.UFP(TOTAL,ZNTITIZS) + 1;
Save Ulocks (Block List. Tail Of (Blocks));
Text 10 . Mew Line;
Block Mode :- Block List. Read Of (TheList B> Dlocks);
Text.10-. Put (Block •od. 3ame) ;
if not Step List.Xs Null (Block Node.Steps)

then Save-Steps (SBlock Mode. Steps);
end if;

if not Field List.Xs Null(Block Mode.rields)
then save Wields (Blockode..ields);
end it;

end if;
end Save Blocks;

prooedure Save Apps (Appa : in App List. List) is
begin

if not App List~zaMull (APP.)
then

App Mode. UrP (TOTAL, TRANSACTIOS)
App Mode ,UMP (TOTAL, TPAISACTONS) + 1;

Save &ppe (App List. Tail Of (app));
Tezt 10.NMw Line;
App "ode :- AMList. ReadOf (ThateList > Apps);
Text 10. Put (app M"d. Name);
if not Step List.zs Null (App ode. Steps)

then Sae Steps (app Mode. Steps);
end if;

if not Block List. Is Mull (appMode.2locks)
then Sgave Blocks (ppiMode. Bl3ocks);
end if;

end if;
end Save Appe;

procedu SQL (Pro jectecod : in Projectlodsttype) is

130

begin
Text_10.3New Line;
Text 10. Put ("XNSUT XNTO 112 3K VALU3S");
Text 10. Now Line;
Text 0. Put (" C'" & Projectreocord.M MUMW & ',)

Tezt10.Put("'" & Project recod.Team D(2...12) & ',)

Te"xt 1. New Line;

Text I0.Put("'");
Rloatmt0. Put (io ject record. CodelWks);

fText I0.iut"',

Text I0. Put (" ");
Iloatlt 10. Put (Pro ject record. Test like);
TextIO.Put(","-);

TextI0.Put("'1);
iloatit ICX. Put (Pro ject record. Code Ers);
Text I0.iut("I'");

Text I0.Put("'");
iloatit 10X. Put (Pro jectrzecozd. TeatEra);
Text I0.PutC"I',");

Text IC. Now Line;

Natural IC. Put (Pro ject record. Uris (iDV, TEINS&CTOU)
Text10. Put ("'");

Natural_10. Put (Pro jectjecord. UMig (CRaIM, TRANSAMCTIE))
Text 10. Put (","I);

Natural 10. Put (Pro ject-record. Uria (DZLaTZ, TUiNSCIACKI))
Text 10.- Put (", ") ;

Natural 10. Put (Pro ject-record. UrPa (AD=~, MTXT138))
Text I0.PUtVC""):

Natural_10. Put (Pro ject record. Uris (CHMM, UETTMZ))
Text I0. Put(",") ;

Natural 10. Put (Pzo ject record. Urs (DZL3T, NT1T1));
Text-10.Put C",");

Natural 10. Put (Pro ject record. Urpm (aMCin OMTMU));
Text I0. Put (", 1);

Naturallo. Put (Pro ject record Uris(CýhM,OUTPU))
Text I0.Put (",");

Natural 10X. Put (Project recozd.rPa (D3JATED, OTpuTS

Text io.Putv", .) ;

Natural-X0. Put (Pro jectrecord. Uri (AMW~ IUTU));
Text I0. Put ", ") ;

natural30M. Put (Pro ject record. Uri (mým, INUT);
Text-10.Put (",");

Naturaljo0. put (Pro jectjrecord .w Urs DIT F IT));
Text I0.put("););

131

wmztlO 1.amw Line;

and WQ;
pragm page;
begizn

Ift roject •List. ZaNll (Project)

then
ft t!O. Put (-"o projects to save.-);

else

Project-_d :- Projectist . Need_Ofif(tIeLJ-t Project);

for i in reverse 1.. m mD Length loop

if Project-"od..URm(i) /- '•
then

Last Char :- i;
esit;

end if;

end loop;

%%zt• O .Create (Vile -> V2V Output,
Na => "fp2old. " a
Pro:jectods. *.S= m(1.. LmstChar));

!ezt!o. Set output (Vile -> 2Vý Output);

for i in 1..72 loop
ext O. Put("-");

end loop;

!xztzO.Put("m I & project odm. SUm a ", N);
TeztZO. Put ("Tean: & Pvrojectode. !emZD);
24zt-ZO . New Line;

for i in 1. .72 loop
TeztIO. Put(-)

and loop;

if not AppM st. z.Mall (Projet__•dA.pp.)
than

sae•App (Pro ject ds.Ampps) ;
end if;

SQL .ilea(L. .3) :- "orn";
for L in 1 .. M wa dLemgth loop

if Project-ko".I Vm(i) - ' '
then

Last Cha :- 1;

132

emit;
and it;

ad loop;

SOL yilenamin (1. . M4ast Char) -"Bar" &
Pro jectmods. SU3ý (1. Laintý Car) & -. sqjl";

iez P10. Create (File M>VP2VSQL YLIe,
Sams in SL lenmm) ;

wezt 10. Set, Output (Vile > VP2VSQLFile);

woet_10. Set_ output (rile To !mt 0. Standard~output);

Tezt_10Mev_ Line;
wmext 20. Put
("How, login to SQLPLUS and IThS! SUR" & Pro ject, Nods. 823k Hum);

end if;

end VrP2V; -- in spite of salien
--- ---

133

Bibliography

1. Albrecht, Allan J. "Measuring Application Development Productivity," in Proceedings Joint
SHAREIGUIDEIIBM Application Development Symposium 1979.

2. Abrecht, Allan J. and J. E. Gaffney, "Software Function, Source Lines of Code, and Development
Effort Prediction: A Software Science Validation," IEEE Transactions on Software Engineering
9: 639-648 (November 1983).

3. Bailor, Maj. Paul and Maj. J. Howau, "Class Lectum in CSCE595 Software Geneation and
Maintenance." School of Engineering, Air Force Institute of Technology (AU), Wright-Patneron AFB
OH, January 1992.

4. Behrens, Charles A., "Measuring the Productivity of Computer Systems Development Activities with
Function Points," IEEE Transactions on Software Engineering 9:648-649 (November 1983).

5. Blanken, Henk, "Implementing Wrsion Support for Complex Objects," Data and Knowledge
Engineering 6: 1-25 (January 1991).

6. Boehm, Barry W., Software Engineering Economics. Englewood Cliffs NJ: Prentice-Hall, 1981.

7. Booch, Grady, Software Components with Ada: Structures, Tools, and Subsystems. Menlo Park CA:
Benjamin/Cummings, 1986.

8. Brown, Darlene, "Productivity Measurement Using Function Points," Softw•we Engineering 13: 23-
32 (July 1990).

9. D'Angelo, Dr. Anthony, "Class Lecture in AMGT602 Federal Financial Management." School of
Systems and Logistics, Air Force Institute of Tbchnology (AU), Wright-Patterson AFB OH, August
1992.

10. DeMarco, Thomas and T. Lister, "State of the Art Paper," 1990.

11. Detoing, W. Edwards, Out of the Crisis. Cambridge, MA: Massachusetts Institute of Technology, 1986.

12. Dreger, J. Brian, Function Point Analysis. Englewood Cliffs NJ: Prentice-Hall, 1989.

13. Esterling, Bob, "Software Manpower Costs: A Model," Datamation 13:164-170 (Mach 1980).

14. Gould, J. P. and C. E. Ferguson, Microeconomic Theory. Homewood IL: Irwin, 1980.

15. Henry, S. and D. Kafura, "Software Stucture Metrics Based on Information Flow," IEEE
Transactions on Software Engineering 7: 510-518 (May 1981).

16. Henry, Sallie and J. Lewis, "Integrating Metrics into a Laqp-Scak Software iDevelopmet
Environment," The Journal of Systems and Software 13: 89-96 (October 1990).

17. Humphrey, Watts S. and N. D. Singpurwalla, "Predicting (Individual) Software Productivity." IEEE
Transactions on Software Engineering 17: 196-207 (Febuary 1991).

134

18. Jones, Capers, Applied Software Measurement. New York: McGraw-Hill, 1991.

19. Low, Graham C. and D. R. Jefery, "Function Points in the Estimation and Evaluation of the Software
Process," IEEE Transactions on Sftware Engineering 16: 64-71 (January 1990).

20. McCabe, Thomas J., "A Complexity Measure," IEEE Transactions on Software Engineering 2: 308-
320 (April 1976).

21. Neter, John, W. Wasserman and M., H. Kutner, Applied Linear Regression Models. Homewood IL:

Irwin, 1989.

22. Oracle Corporation, Belmont CA, Pro*Ada User's Guide November 1986.

23. Pirsig, Robert M., Zen and the Art of Motorcycle Maintenance. New York NY: William Morrow and
Co., 1974.

24. Putnam, Lawrence H., Measures for Excellence. Englewood Cliffs NJ: Prentice-Hall, 1992.

25. Rakos, John J., Software Project Management for Small to Medium Sized Projects. Englewood Cliffs
NJ: Prenrtice-Hall, 1990.

26. Ratcliff, Bryan and A. L. Rollo, "Adapting Function Point Analysis to Jackson System Development,"
Software Engineering Journal (January 1990).

27. Reynolds, Daniel, "Class Lecture in MATH696 General Linear ModeL" School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, March 1992.

28. SAS Institute, Cary NC, SAS Procedures Guide 1988.

29. SAS Institute, Cary NC, SAS User's Guide : Statistics Version 6 ed 1991.

30. Sayles, Jonathon S., How to Use Oracle SQL*Plus. Wellesley MA: QED Information Sciences, 1989.

31. Sommerville, Ian, Software Engineering. London, England: Addison-Wesley, 1989.

32. Symons, Charles R., "Function Point Analysis: Difficulties and Improvements," IEEE Transactions
on Software Engineering 14: 2-11 (January 1988).

33. Symons, Charles R., Software Sizing and Estimating Mk H FPA. West Sussex, England: John Wiley
and Sons Ltd. 1991.

34. Systems Support Division, "Thesis Topic," 1990. Air Force Institute of Tlclmology (AU), %right-
Patterson AFB OH.

35. Systems Support Division, "Mission Statement," 1991. Air Force Institute of Technology (AU),
Wright-Patterson AFB OH.

36. Tanenbaum, Andrew S., Srnctuared Computer Organization. Englewood Cliffs NJ: Prentice-Hail, 1964.

37. vanGenuchten, Michiel, "Why is Software Late? An Empirical Study of Reaom For Delay in Software
Development," IEEE Transactions on Software Engineering 17: 582-589 (June 1991).

38. Verner, June and G. Tate, "Estimating Size and Effort in Fourth-Generution Development," IEEE
Software 5:15-22 (July 1988).

135

Vita

Captain Steven D. Radnov was born on 20 December 1957 in Omaha, NebraskL He gradunted from

William Jenmings Bryan High School in Omaha, Nebraska in 1976. He enlisted in the U.S. Air Force in

1978 as an Accounmtig and Finance technician and was sationed at Lackdand Air Force Base, Toam from

January 1979 to April i983. He was accepted into the Airman's Education and Commissioning Program

and earned a bachelor's degree in Computer Science hom the University of Nebraska at Omaha, and was

commissioned at Officer Training School in August of 1985. He was stationed at Offutt AFB, Nebraska

from September 1985 until April 1991. At Offutt AFB, he was a database analyst in the Intelligence

Support Directorate and was Chief of the Imagery Exploitation Section. He was selected to pursue a

mster's degree in Software Systems Management at the Air Force Institute of Technology.

Permanent Address: 5818 Orchard Ave. Omaha, NE 68117

136

REPORT DOCUMENTATION PAGE Form Approved

IT OMB No 0704-0788

•j0 0,t' 0e+••.•+ ,•• ,•fD, el +cr P+ e+P" S, hpt '_n + -o'•t : S .' •pr e ...•r ao•t r '•+ •p '.Ks D,,+r0e',estlm'tp •n, " . DeC! 0? ?,

Aa%'' Hea 1-1:'alle c ý. - t0 o~'O e'A*'C- 6"0 ýop! e ef~eor
.1 0 ?f~~ ~"a ,0 _ eC UCI~or Z~eiZC-8 Ih"!~

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVEREDDecember 1992 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERSSSOFTWARE SUPPORT MEASUREMENT AND ESTIMATING
FOR ORACLE DATABASE APPLICATIONS USING MARK II

FUNCTION POINTS
6. AUTHOR(S)

Steven D. Radnov, Captain, USAF

7. PERFORMIN t ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GSS/LSY/92D-4

9 SPONSOi, INC MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGi'MONITORING

AGENCY REPORT NUMBER

Captain Auzenne
AFIT/SCV
WPAFB OH 45433

11. S,,P7ý E%_NsTAR' NOTES

12a L).S-RrBt T ON AVAILABILITY STATEMENT 112b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ASSTr•'Zr)',' ,u , u 200 words)

This study investigated the results of measuring software support of Oracle database
applications and estimating the effort and schedule required to provide support. Software
measurement was accomplished with a variant of the function points metric, called Mark II
function points, which is comprised of three weighted parameters, inputs, entities, and out-
puts. A technique for mapping Mark II function points to Oracle DBMS components was
developed, and the size of the software support for each project, per team, was measured by
tabulating and weighting the number of inputs, entities, and outputs that are added, changed,
and/or deleted. Software support effort was measured in work-hours and schedule in calen-

dar-weeks for given levels of function points. A data collection program was written to assist
with tabulating the measurements and a•-o provided an option for sizing the support by
analogy. Observations were collected for 12 projects ranging up to 50 function points. The
relationship between software support measurement in Mark II function points and the
resulting effort or schedule was extensively analyzed for one and two person teams. A rela-
tionship determined by regression analysis was shown to be statistically significant for both
effort and schedule.

14. SUBJECT TERMS 15. NUMBER OF PAGESSoftware, Software Development, Software Measurement, DBMS, Software 150
Maintenance, Function Points, Software Estimation, Databases, Database 16. PRICE CODE

Development

417. SECURTY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT'
OF RIEPCRT OF THIS PAGE I OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standaro Form 298 'Rev 2-89)

P,-%: *2

API?"ControlNumber AFIT/GSS/LSY/92D 4

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications
of AFIT thesis research. Please retumrn completed questionnaires to: AFIT/LSC. Wright-
Patterson AFB OH 45433-9905.

1. Did this research contribute to a current research project?

a. Yes b. No

2. Do you believe this research topic is significant enough that it would have been researched (or
contracted) by your organization or another agency if AFIT had not researched it?

a. Yes b. No

3. The benefits of AFIT research can often be expressed by the equivalent value that your agency
received by virtue of AFRT performing the research. Please estimate what this research would
have cost in terms of.manpower and/or d6llars if it had been accomplished undcr contract or if it
had been done in-house.

Man Years

4. Often it is not possible to attach equivalent dollar values to research, although the results of
the research may, in fact, be important. Whether or not you were able to establish an equivalent
value for this research (3, above) what is your estimate of its significance?

a. Highly b. Significant c. Slightly d. Of No
Significant Significant Significance

5. Comments

Name and Grade Organization

Position or Title Address

